
RECONFIGURATION AND EXTENSIBILITY FOR

LOW-LATENCY KEY-VALUE STORES

by

Chinmay Satish Kulkarni

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

May 2021

Copyright © Chinmay Satish Kulkarni 2021

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Chinmay Satish Kulkarni

has been approved by the following supervisory committee members:

Ryan Stutsman , Chair(s) 03/05/2021
Date Approved

Robert Preston Riekenberg Ricci , Member 03/05/2021
Date Approved

John Regehr , Member 06/09/2021
Date Approved

Kobus Erasmus Van Der Merwe , Member 03/11/2021
Date Approved

Badrish Chandramouli , Member 03/05/2021
Date Approved

by Mary Hall , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda , Dean of The Graduate School.

ABSTRACT

The last decade of computer systems research has yielded efficient kernel-bypass stores

with throughput and access latency thousands of times better than conventional stores.

These gains come from careful attention to detail in dispatch and request processing,

so these systems often start with stripped-down designs to achieve their performance

goals. Hence, these systems trade-off features that would make them more practical and

cost-effective at cloud scale, such as load (re)distribution, multitenancy, and expressive

data models.

This dissertation shows that this trade-off is unnecessary. It presents mechanisms for

reconfiguration, multitenancy, and expressive data models that would make these systems

practical and efficient at cloud scale while preserving their performance benefits.

Rocksteady is a live migration technique for scale-out in-memory key-value stores. It

balances three competing goals: it migrates data quickly, it minimizes response time

impact, and it allows arbitrary, fine-grained splits. Rocksteady allows a key-value store

to defer all repartitioning work until the moment of migration, giving it precise and timely

control for load balancing.

Shadowfax is a system that allows distributed key-value stores to transparently span

DRAM, SSDs, and cloud blob storage while serving 130 Mops/s/VM over commodity

Azure VMs using conventional Linux TCP. Beyond high performance, Shadowfax uses

a unique approach to distributed reconfiguration that avoids any server-side record

ownership checks or cross-core coordination both during regular operation and migration.

Splinter is a system that allows clients to extend low-latency key-value stores by

migrating (pushing) code to them. Tenants can write fine-grained extensions and push

them to the store at runtime. The core of Splinter’s design relies on type- and memory-

safe extension code to avoid conventional hardware isolation costs. This still allows for

bare-metal execution, avoids data copying between extensions and the store, and makes

granular storage functions that execute for less than a microsecond practical.

Friends are the family we choose for ourselves

– Edna Buchanan

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . viii

LIST OF TABLES . xiii

CHAPTERS

1. INTRODUCTION . 1

1.1 Reconfiguration and Redistribution . 2
1.2 Preserving Performance in the Cloud . 2
1.3 Expressive Data Models and Multitenancy . 3
1.4 Contributions . 3
1.5 Fast Data Migration . 5
1.6 Low Cost Coordination . 6
1.7 Extensibility and Multitenancy . 7

2. FAST DATA MIGRATION . 9

2.1 Background and Motivation . 12
2.1.1 Why Load Balance? . 13
2.1.2 The Need for (Migration) Speed . 15
2.1.3 Barriers to Fast Migration . 16
2.1.4 Requirements for a New Design . 17

2.2 Rocksteady Design . 18
2.2.1 Task Scheduling, Parallelism, and QoS . 19

2.2.1.1 Source-side Pipelined and Parallel Pulls . 20
2.2.1.2 Target-side Pull Management . 21
2.2.1.3 Parallel Replay . 22

2.2.2 Exploiting Modern NICs . 22
2.2.3 Priority Pulls . 23
2.2.4 Lineage for Safe, Lazy Rereplication . 24

2.3 Evaluation . 25
2.3.1 Experimental Setup . 26
2.3.2 Migration Impact and Ownership . 27
2.3.3 Load Impact . 28
2.3.4 Asynchronous Batched Priority Pulls . 28
2.3.5 Pull and Replay Scalability . 29

2.4 Discussion . 29
2.4.1 Going Even Faster . 30

2.5 Related Work . 31
2.6 Conclusion . 33

3. LOW COST COORDINATION . 44

3.1 Background on FASTER . 47
3.1.1 HybridLog Allocator . 48
3.1.2 Asynchronous Cuts . 48

3.2 Shadowfax Design . 49
3.2.1 Partitioned Dispatch and Sessions . 51

3.2.1.1 Client Sessions . 51
3.2.1.2 Exploiting Cloud Network Acceleration . 52

3.2.2 Record Ownership . 53
3.2.2.1 Ownership Transfer . 54

3.3 Scale-out and Hash Migration . 55
3.3.1 Migration Protocol . 56
3.3.2 Leveraging Shared Storage for Decoupling . 58
3.3.3 Cleaning Up Indirection Records . 59
3.3.4 Fault Tolerance . 59

3.4 Discussion . 60
3.5 Evaluation . 61

3.5.1 Experimental Setup . 62
3.5.2 Throughput Scalability . 63

3.5.2.1 Insert Only Workload . 64
3.5.3 Batching and Latency . 65
3.5.4 Memory Budget . 65
3.5.5 Scale Out . 66

3.5.5.1 All-In-Memory Scale Out . 66
3.5.5.2 Indirection Records . 67
3.5.5.3 Sampled Records . 68
3.5.5.4 Ownership Validation . 69

3.5.6 System Scalability . 69
3.6 Related Work . 70

3.6.1 Epochs and Cuts . 70
3.6.2 High-throughput Networked Stores . 70
3.6.3 Elasticity . 71

3.7 Conclusion . 71

4. EXTENSIBILITY AND MULTITENANCY . 85

4.1 Motivation . 87
4.1.1 The Need for Lightweight Isolation . 88

4.2 Splinter Design . 89
4.2.1 Compiling and Restricting Extensions . 91

4.2.1.1 Trust Model . 92
4.2.1.2 Memory Safety . 93
4.2.1.3 Restricting Unsafe Rust . 93

4.2.2 Store Extension Interface . 94
4.2.2.1 Storing Values . 94
4.2.2.2 Accessing Values . 95
4.2.2.3 Avoiding Serialization and Deserialization . 97

4.2.3 Cooperatively Scheduled Extensions . 98

vi

4.2.3.1 Uncooperative and Misbehaving Extensions 99
4.2.4 Tenant Locality and Work Stealing . 100

4.3 Implementation . 100
4.4 Evaluation . 101

4.4.1 Experimental Setup . 101
4.4.2 Isolation Overhead . 102
4.4.3 Tenant Density . 102
4.4.4 Request Heterogeneity . 103
4.4.5 Aggregation Extension . 104
4.4.6 TAO Extension . 106

4.5 Related Work . 107
4.5.1 Low-latency RDMA-based Storage Systems . 107
4.5.2 Pushing Computation to Storage . 108

4.5.2.1 SQL . 108
4.5.2.2 Native-code Extensions . 108

4.5.3 Fault Isolation . 109
4.6 Conclusion . 110

5. CONCLUSION . 123

REFERENCES . 125

vii

LIST OF FIGURES

2.1 The RAMCloud architecture. Clients issue remote operations to RAMCloud
storage servers. Each server contains a master and a backup. The master
component exports the DRAM of the server as a large key-value store. The
backup accepts updates from other masters and records state on disk used for
recovering crashed masters. A central coordinator manages the server pool
and maps data to masters. 35

2.2 Index partitioning. Records are stored in unordered tables that can be split
into tablets on different servers, partitioned on the primary key hash. Indexes
can be range partitioned into indexlets; indexes only contain primary key
hashes. Range scans require first fetching a list of hashes from an indexlet,
then multigets for those hashes to the tablet servers to fetch the actual records.
A lookup or scan operation is (usually) handled by one server, but tables and
their indexes can be split and scaled independently. 35

2.3 The throughput and CPU load impact of access locality. When multigets
always fetch data from a single server (Spread 1), throughput is high, and
worker cores operate in parallel. When each multiget must fetch keys
from many machines (Spread 7), throughput suffers as each server becomes
bottlenecked on dispatching requests. 36

2.4 Index scaling as a function of throughput. Points represent the median over
five runs, and bars show standard error. Spreading the backing table across
two servers increases total dispatch load and the 99.9th percentile access
latency for a given throughput compared to leaving it on a single server. 37

2.5 Bottlenecks when using log replay for migration. Target side bottlenecks
include logical replay and rereplication. Copying records into staging buffers
at the source has a significant impact on the rate of migration. 38

2.6 Overview of Rocksteady Pulls. A Pull RPC issued by the target iterates
down a portion of the source’s hash table and returns a batch of records. This
batch is then logically replayed by the target into its in-memory log and hash
table. 39

2.7 Source pull handling. Pulls work concurrently over disjoint regions of the
source’s hash table, avoiding synchronization, and return a fixed amount of
data (20 KB, for example) to the target. Any worker core can service a Pull

for any region, and all cores prioritize normal-case requests over Pulls. 39

2.8 Target pull management and replay. One Pull is outstanding per source
partition. Pulled records are replayed at a lower priority than regular
requests, and each worker places records into a separate side log to avoid
contention. Any worker core can service a replay on any partition. 40

2.9 Running total YCSB-B throughput for (a) Rocksteady, (b) Rocksteady with
no PriorityPulls, and (c) when ownership is left at the source throughout
the migration. Dotted lines demarcate migration start and end. 41

2.10 Running median (dashed line) and 99.9th percentile (solid line) client-
observed access latency on YCSB-B for (a) Rocksteady, (b) Rocksteady with
no PriorityPulls, and (c) when ownership is left at the source throughout
the experiment. 41

2.11 Dispatch core and worker core utilization on both source and target for
(a) Rocksteady, (b) Rocksteady with no PriorityPulls, and (c) when
ownership is left at the source throughout the migration. 41

2.12 Impact of workload access skew on source-side dispatch load. Batched
PriorityPulls hide the extra dispatch load of background Pulls regardless
of access skew. 41

2.13 Median (dashed line) and 99.9th percentile (solid line) access latency without
background Pulls. Async batched PriorityPulls restore median latency
almost immediately compared to sync PriorityPulls. 42

2.14 CPU Load with no background Pulls. Asynchronous batched
PriorityPulls improve dispatch and worker utilization at both the source
and target compared to synchronous Pulls that stall target worker cores. 42

2.15 Source and target parallel migration scalability. Source side pull logic can
process small 128 B objects at 5.7 GB/s. Target side replay logic can process
small 128 B objects at 3 GB/s. For larger objects, neither side limits migration. 43

3.1 A typical data processing pipeline. Services receive and process raw events.
A state management system ingests processed events and serves offline
queries against them. 73

3.2 FASTER’s HybridLog allocator spans memory and local SSD. The portion in
memory contains a mutable region that acts as a cache and a read-only region.
FASTER’s hash table points to a reverse linked list of records on the HybridLog. 74

3.3 View changes of shared state in FASTER take place over an asynchronous cut
using epochs. Process-global state is updated first; when every thread has
observed the update, a postchange function is triggered. 74

3.4 Each server thread receives batches of requests from sessions and processes
them via a shared, per-machine FASTER instance. Results are returned over
the network by the same thread, avoiding cross-thread coordination. 75

3.5 Client threads partition requests into per-session transmit buffers along with
a callback. Batches of asynchronous requests are kept pipelined to the server,
keeping both the client and the server busy. 75

3.6 Ownership transfer. A view change is asynchronously propagated within a
server, defining a cut across server threads. Then, the server extends this into
a global cut covering all its connected client sessions. This defines a global
view boundary among all operations while avoiding cross-core coordination
both at servers and clients. 76

ix

3.7 Migration state machine on the source. This state machine is responsible for
moving the source into the new view, for sampling and shipping hot records
to the target, and for migrating all records in the hash range to the target. 76

3.8 Migration state machine on the target. It is responsible for moving the target
into the new view, safely executing requests on the migrating hash range,
and receiving records from the source . 77

3.9 Indirection records create fine-grained data dependencies between logs.
These dependencies are cleaned up lazily during log compaction. 77

3.10 Shadowfax’s thread scalability. With TCP acceleration enabled, throughput
scales linearly to 130 Mops/s and tracks FASTER (with no networking). With
acceleration disabled, throughput scales to only 75 Mops/s. 78

3.11 With TCP acceleration, throughput scales linearly to 87 Mops/s under a
uniform distribution. In comparison, Seastar scales to 10 Mops/sec. 78

3.12 Shadowfax’s thread scalability on different cloud platforms and networking
stacks. Throughput continues to scale linearly. 79

3.13 For an insert-only workload, Shadowfax’s throughput is limited by the rate at
which FASTER’s log tail can be incremented. Throughput scales to 8 Mops/s
on 16 threads and then saturates. 79

3.14 Shadowfax throughput under decreasing memory budgets. Under a Zipfian
access pattern, it can sustain high throughput under small budgets because
of a small working set that fits in memory. 80

3.15 Running throughput when 10% of a server’s load is migrated to an idle
target. Migration was initiated at 1 minute. For a memory budget of 60 GB
(graph (b)), scale-out shifts load in 32 s while maintaining throughput above
80 Mops/sec. 81

3.16 Source and target throughput during scale up. Sequentially scanning over
the cold tier during migration (graph (c)), increases the duration of scale
out to 180 s during which the source loses one thread’s worth of throughput
(1.5 Mops/sec). 81

3.17 Number of pending operations during scale up. Indirection records (graph
(b)) result in remote accesses to shared storage, which leads to larger pending
queues once scale up has completed. Without them (graphs (a), (c)), these
queues drain shortly after scale up completes. 81

3.18 Impact of indirection records on migration size. Indirection records lead to
larger migrations because records that are not in main memory cannot be
filtered out. 82

3.19 Running throughput when compacting the source’s log and cleaning up
indirection records while doing so. Indirection records do not add any
additional overhead over that of compaction. 82

3.20 Impact of shipping sampled records during ownership transfer to the target.
Sending them over improves the target’s throughput during the first 5 s of
migration. 83

x

3.21 The overhead of using views to validate record ownership at a server is
negligible. When coupled with fast migration, this allows Shadowfax to
shard and redistribute load whenever required. 83

3.22 Shadowfax continues to retain FASTER’s high throughput even across
servers. A cluster consisting of 12 servers scales linearly to 930 Mops/s. 84

4.1 Tree traversal using get() operations over a key-value store. Each step
requires a lookup at the storage layer, which is latency-bound and expensive
for deep traversals. If multitenant stores could be safely extended this
function could avoid remote access stalls and request processing costs. 112

4.2 Simulated throughput versus the number of tenants. With hardware
isolation, even modestly increasing the number of tenants to 16 (just twice
the number of cores) leads to a significant drop in throughput. “No isolation”
represents an upper bound where isolation costs are zero. 112

4.3 Overview of Splinter. Tenant data is stored in memory, and tenants can
invoke extensions they have installed in the store (1©). Extensions are type
safe, but compile to native code. The NIC uses kernel bypass for low latency
(2©) and assists in dispatch by routing tenant requests to cores (3©). Each core
runs a single worker kernel thread that uses a user-level task scheduler to
interleave the execution of tenant requests (4©). 113

4.4 Example aggregate extension code. The extension takes a key as input
(directly from a request receive buffer), looks it up in the store, and gets a
reference to a value that contains a list of keys. It looks up each of those keys,
it sums their values, and directly appends the result to a response buffer. 114

4.5 References during aggregation. All data accessed by the extension in
Listing 4.4 is by reference whether that data is part of the arguments in the
receive buffer or part of a record in the store. References work in reverse
for the response; the extension passes references to data to the store, and the
store copies that data into the response buffer. 115

4.6 Dispatch tasks on each core steal requests from the receive queue of the core
to their right whenever they have no requests in their own receive queue. As
a result, work from overloaded cores get redistributed without generating
high contention. Here, core 1’s in-progress tasks were induced by requests
stolen from core 2’s queue. 115

4.7 Comparison of YCSB-B performance using native and extension-based get()

and put() operations at a tenant density of 1,024. When using extensions, the
server saturates at 4.3 million operations per second. In comparison, native
operations are about 23% more efficient, saturating at 5.3 million operations
per second. 116

4.8 Storage server scalability at a tenant density of 1,024. Points represent
throughput when YCSB-B latency crosses 10 µs. Isolation overhead is
consistently lower than 20%. 117

xi

4.9 Scaling tenants. Points represent server throughput when YCSB-B latency
crosses 10 µs. With isolation, increasing the number of tenants only impacts
performance modestly; moving from 8 to 1,024 tenants reduces throughput
by 700 Kops/s. 117

4.10 Latency with tenant skew. The server runs near saturation at 4 Mops/s in
each case. Without work stealing, tail latency under high skew increases from
138 µs to 330 µs. Without tenant locality, median and tail latencies are affected. 118

4.11 Performance with a small fraction (15%) of cooperative long running
procedures that perform 128 gets. Yielding frequently can help improve
median latency from 38 µs to 22 µs. However, yielding too frequently hurts
median latency. The storage server was offered a constant load of 1.1 Mops/s. 119

4.12 Impact of uncooperative requests on performance. System throughput stays
constant at 3 Mops/s throughout. For fractions of uncooperative requests
greater than 1 every million, tail latency is significantly affected (> 100 µs). . . . 120

4.13 Aggregation throughput versus latency. Aggregations combine four records.
Under low load, the median latency of a client-side implementation is
1.6× that of an extension-based implementation. Using an extension also
improves saturating throughput from 1.2 M to 1.6 M aggregations per second. 121

4.14 Saturating throughput of aggregation versus the number of aggregated
records. The extension-based implementation outperforms the client-side
implementation irrespective of the number of records aggregated. The gains
are highest when aggregations are over two records (2.4 M versus 1.5 M
aggregations per second). 121

4.15 Saturating throughput of the aggregation extension versus the amount of
compute per aggregation. After aggregating two records, each operation
raised the result to the power n, implemented as n 64-bit multiplications
(hence the x-axis). Increasing the order (n) increases server-side compute
in the extension-based implementation, hurting throughput. At an order of
5000, the client-side approach is 2× faster. 122

4.16 TAO extension throughput versus latency. With 60% object get and 40%
assoc range operations, the TAO extension can reach 2.8 Mop/s before
saturating with an average latency of 30 µs. By using native get() operations
for object get, the extension-based approach can outperform a purely
client-side implementation by 400 Kop/s. 122

xii

LIST OF TABLES

2.1 Experimental cluster configuration. The evaluation was carried out on a 24
node c6220 cluster on CloudLab. Hyperthreading was disabled on all nodes.
Of the 24 nodes, one ran the coordinator, eight ran one client each, and the
rest ran RAMCloud servers. 34

3.1 Virtual machine details used to evaluate Shadowfax. This is the E64 v3 series
available on Azure. Instances were configured to use hardware accelerated
networking. 72

3.2 Shadowfax’s latency at server saturation. On Azure’s RDMA instances, it
can maintain a median of 40 µs while performing 126 Mops/s. With TCP,
this increases to 1.3 ms. 72

4.1 Context switch overhead for different Intel Xeon architectures as measured
on CloudLab. Each number represents the median of a million samples.
Based on these measurements, we chose 2.16 µs and 1.40 µs for the context
switch overhead with and without KPTI in our simulations. 111

4.2 Extensions interact with the store locally through an interface designed to
avoid data copying. 111

4.3 Experimental configuration. Evaluation used one machine as server and one
as client. Only the NIC-local CPU socket was used on the server. 111

CHAPTER 1

INTRODUCTION

With the explosive growth in data-driven applications across the cloud and edge,

vast quantities of data are continuously generated by sources such as Internet-of-Things

devices, mobile applications, and servers today. These data are processed by a diverse

range of applications and services in the cloud to gain insights and drive application logic.

Data processing occurs in various contexts, such as ad-hoc analysis of collected data in

batches and real-time monitoring and processing as it arrives in streaming dataflows.

Cloud services receive raw data and events from the sources mentioned above.

Streaming engines such as Spark [132] and Trill [15] process them, and a state management

system ingests this processed data. Offline queries analyze this data to train and update

prediction models, analyze user behavior, generate device crash reports, and much more.

Hence, this state management system (or store) is the crucial piece in these analytics

pipelines; it serves as a focal point for massive numbers of events and real-time queries

over the aggregated results.

The last decade of computer systems research has yielded efficient stores with

throughput and access latency thousands of times better than conventional stores. Today,

these systems can execute millions of operations per second with latencies of 5 µs or

less [28, 74, 96]. These gains come from careful attention to detail in dispatch and request

processing, so these systems often start with stripped-down designs to achieve their

performance goals.

However, for these low-latency stores to be practical in the long-term, they must

evolve to include many of the features that conventional data center and cloud storage

systems have while preserving their performance benefits. One key feature is the

ability to reconfigure and (re)distribute data in response to load imbalances and failures

(which frequently occur in practice). A second key feature is retaining performance and

2

reconfigurability in the cloud, where networking stacks have been historically slow, and

multiple tenants share resources. A third key feature is to support a diverse set of such

tenants with varying access patterns, data models, and performance requirements.

1.1 Reconfiguration and Redistribution
When distributing data (records) across a cluster of machines, hash partitioning records

across servers is often the norm. It is simple, efficient, scalable, and also helps balance load

across servers. Most systems tend to hash records, prepartition them into coarse hash

buckets, and then assign ownership of these buckets to servers in a cluster. However,

coarse prepartitioning has many drawbacks that hurt performance and utilization. It can

lead to severe load imbalances when applications access a small set of records more often

than the rest [1] (also known as skew). It can also lead to high request fan-out when

applications exhibit temporal locality in the records they access [60]. Mechanisms that

reconfigure ownership and redistribute records between servers can help mitigate these

drawbacks.

1.2 Preserving Performance in the Cloud
Several of these stores exploit many-core hardware to ingest and index events at high

rates – 100 million operations (Mops) per second (s) per machine [54, 71, 74, 101]. However,

they rely on application-specific hardware acceleration, making them impossible to deploy

on today’s cloud platforms. Furthermore, these systems only store data in DRAM

(Dynamic Random Access Memory), and they do not scale across machines; adding

support to do so without cutting into normal-case performance is not straightforward.

For example, many of them statically partition records across cores to eliminate cross-core

synchronization. Statically partitioning records optimizes normal-case performance, but it

makes concurrent operations like migration and scale-out impossible; transferring record

data and ownership between machines and cores requires a stop-the-world approach due

to these systems’ lack of fine-grained synchronization.

Achieving high throughput while fulfilling all of these requirements on commodity

cloud platforms requires simultaneously solving two key challenges. First, workloads

change over time, and cloud VMs (Virtual Machines) fail, so systems must tolerate

3

failure and reconfiguration. Doing this without hurting normal-case performance at 100

Mops/s is hard since even a single extra server-side cache miss to check record ownership

or reconfiguration status would cut throughput by tens-of-millions of operations per

second. Second, the high CPU (Central Processing Unit) cost of processing incoming

network packets easily dominates in these workloads, especially since, historically, cloud

networking stacks have not supported high data rates and high efficiency.

1.3 Expressive Data Models and Multitenancy
Since the end of Dennard scaling, disaggregation has become the norm. A high-speed

network separates applications into a compute and storage tier, allowing each tier to be

provisioned, managed, and scaled independently. However, this approach is beginning to

reach its limits. Applications have evolved to become more data-intensive than ever. In

addition to good performance, they often require rich and complex data models such as

social graphs, decision trees, vectors [72, 92], to name a few.

On the other hand, storage systems have become faster with the help of kernel-

bypass [29, 96], but at the cost of their interface – typically simple point lookups and

updates. When applications use these simple interfaces to implement their data model,

they stall on network round-trips to the storage tier. Since the actual lookup or update

takes only a few microseconds at the storage server, these round-trips create a significant

bottleneck, hurting performance and utilization. Therefore, to fully leverage these fast

storage systems, applications will have to reduce round-trips by pushing compute to them.

Pushing compute to these fast storage systems is not straightforward. They need to be

shared by multiple tenants to maximize utilization, but the cost for isolating tenants using

conventional techniques is too high. Hardware isolation requires a context switch that

takes approximately 1.5 microseconds on a modern processor [61]. This time is roughly

equal to the amount of time it takes to fully process an RPC at the storage server, meaning

that conventional isolation can hurt throughput by a factor of 2.

1.4 Contributions
Low-latency stores adopt simple, stripped-down designs that optimize for normal-

case performance, and in the process, trade-off practicality and cost-effectiveness at

4

cloud scale. This dissertation shows that this trade-off is unnecessary. Carefully

leveraging and extending new and existing abstractions for scheduling, data sharing,

lock-freedom, and isolation will yield feature-rich systems that retain their primary

performance benefits at cloud scale.

This dissertation presents the following horizontal and vertical mechanisms for rapid

low-impact reconfiguration, multitenancy, and expressive data models to make low-

latency storage systems more practical and efficient at cloud-scale:

1. Fast Data Migration: The first piece presents Rocksteady [60], a horizontal mechanism

for rapid reconfiguration and elasticity. Rocksteady is a live migration technique for

scale-out in-memory key-value stores. It balances three competing goals: it migrates

data quickly, it minimizes response time impact, and it allows arbitrary fine-grained

splits. Rocksteady allows a key-value store to defer all repartitioning work until the

moment of migration, giving it precise and timely control for load balancing.

2. Low-cost Coordination: The second piece presents Shadowfax [59], a system with

horizontal and vertical mechanisms that allow distributed key-value stores to

span DRAM, SSDs (Solid State Drives), and cloud blob storage transparently

while serving 130 Mops/s/VM over commodity Azure VMs using conventional

Linux TCP (Transmission Control Protocol). Beyond high single-VM performance,

Shadowfax uses a unique approach to distributed reconfiguration that avoids server-

side record ownership checks or cross-core coordination during regular operation

and migration.

3. Extensibility and Multitenancy: The final piece presents a system called Splinter [61]

that provides clients with a vertical mechanism to extend low-latency key-value

stores by migrating (pushing) code to them. Designed for modern multitenant data

centers, Splinter allows tenants to write fine-grained extensions and push them to

the store at runtime. The core of Splinter’s design relies on type- and memory-safe

extension code to avoid conventional hardware isolation costs. Splinter’s approach

still allows for bare-metal execution, avoids data copying across trust boundaries,

and makes granular storage functions that perform less than a microsecond of

computation practical.

5

1.5 Fast Data Migration
Rocksteady is a live migration technique for scale-out in-memory key-value stores. Built

on top of RAMCloud [96], Rocksteady’s insight is to leverage application skew to speed up

data migration while minimizing the impact on performance. When migrating a partition

from a source to a target, it first migrates ownership of the partition. Doing so moves

load on the partition from the source to the target, creating headroom on the source for

migrating data. The target then pulls records from the source on-demand to keep the

partition online. This on-demand process quickly converges because of skew – most of the

requests issued by an application are for a small set of hot records.

To fully utilize the created headroom, Rocksteady carefully schedules and pipelines

data migration on both the source and target. Migration tasks work over RAMCloud’s

hash table in parallel; doing so keeps the prefetcher happy, improving cache locality. A

shared-memory model allows these tasks to be scheduled on any core, allowing migration

to use any idle resources on the source and target. To further speed up migration,

Rocksteady delays replication of migrated data at the target until after migration. Fault

tolerance is guaranteed by maintaining a dependency between the source and target at

RAMCloud’s coordinator (called lineage) during the migration and recovering all data at

the source if either machine crashes. The target could have served writes to the partition

since the migration began because of early ownership transfer. Therefore, recovery must

also include the target. Putting all these parts together results in a protocol that migrates

data 100x faster than the state-of-the-art while maintaining tail latencies 1000x lower.

Overall, Rocksteady’s careful attention to ownership, scheduling, and fault tolerance

helps it quickly and safely migrate data with low impact. Experiments show that it

can migrate at 758 MBps while maintaining tail latency below 250 microseconds; this is

equivalent to migrating a server’s worth of data in a matter of minutes, allowing for quick

cluster reconfiguration. Additionally, early ownership transfer and lineage help improve

migration speed by 25%. These results have significant implications on system design; fast

storage systems can use Rocksteady as a mechanism to enable flexible, lazy partitioning of

data.

6

1.6 Low Cost Coordination
Shadowfax allows distributed key-value stores to span DRAM, SSDs, and cloud blob

storage transparently. Its unique approach to distributed reconfiguration avoids cross-

core coordination during regular operation and data migration both in its indexing and

network interactions. In contrast to totally-ordered or stop-the-world approaches used

by most systems, cores in Shadowfax avoid stalling to synchronize with one another,

even when triggering complex operations like scale-out, which require defining clear

before/after points in time among concurrent operations. Instead, each core participating

in these operations – both at clients and servers – independently decides a point in an

asynchronous global cut that defines a boundary between operation sequences in these

complex operations. Shadowfax vertically extends asynchronous cuts from cores within

one process [16] to servers and clients in a cluster. These cuts help coordinate server and

client threads in Shadowfax’s low-coordination data migration.

In addition to reconfiguration, Shadowfax has mechanisms that help it achieve a

throughput of 130 Mops/s/VM over commodity Azure VMs [19]. First, all requests

from a client on one machine to Shadowfax are completely asynchronous throughout

Shadowfax’s client-side and server-side network submission/completion paths and

servers’ indexing and (SSD and cloud storage) I/O (Input/Output) paths. This approach

avoids all client- and server-side stalls due to head-of-line blocking, ensuring that clients

can always generate requests, and servers can always process them. Second, instead of

partitioning data among cores to avoid synchronization on record accesses [53, 74, 111,

117], Shadowfax partitions network sessions across cores and shares its lock-free hash

index and log-structured record heap among them. This risks contention when some

records are hot and frequently mutated, but this is more than offset by avoiding software-

level intercore request forwarding or routing within server VMs.

Measurements show that Shadowfax can shift load in 17 s to improve system

throughput by 10 Mops/s with little disruption. Compared to the state-of-the-art, it

has eight times better throughput (than Seastar+memcached) and scales out six times

faster. When scaled to a small cluster, Shadowfax retains its high throughput to perform

930 Mops/s, which is the highest reported throughput for a distributed key-value store

used for large-scale data ingestion and indexing.

7

1.7 Extensibility and Multitenancy
Splinter provides clients with a vertical mechanism to extend low-latency key-value

stores by migrating (pushing) code to them. Splinter relies on a type- and memory-safe

language for isolation. Tenants push extensions – a tree traversal, for example – written

in the Rust programming language [108] to the system at runtime. Splinter installs these

extensions. Once installed, an extension can be remotely invoked (executed) by the tenant

in a single round-trip. For applications such as tree traversals that would ordinarily

require round-trips logarithmic in the tree’s size, Splinter can significantly improve both

throughput and latency.

In addition to lightweight isolation, Splinter consists of multiple mechanisms to make

pushing computation feasible. It minimizes cross-core synchronization by maintaining

tenant locality; it routes tenants to preferred cores at the NIC [43] itself. Cores steal

work from their neighbor to combat any resulting load imbalances. Splinter schedules

pushed code (an extension) cooperatively; extensions periodically yield to the storage

layer, ensuring that long-running extensions do not starve short running ones. This

approach is preferred over conventional multitasking using threads because preempting

a thread requires a context switch, making it too expensive for microsecond timescales. A

dedicated watchdog core identifies and blocks uncooperative extensions. Splinter passes

immutable references to extensions to minimize data copies; the Rust compiler statically

verifies these references’ lifetime and safety. With the help of these mechanisms, Splinter

can isolate hundreds of granular tenant extensions per core while serving millions of

operations per second with microsecond latencies.

Overall, Splinter adds extensibility to fast kernel-bypass storage systems, making

it easier for applications to use them. An 800 line Splinter extension implementing

Facebook’s TAO graph model [11] can serve 2.8 million ops/s on eight threads with an

average latency of 30 microseconds. A significant fraction of TAO involves only a single

round-trip. Implementing these on the client using normal lookups and implementing

the remaining operations using the extension helps improve performance to 3.2 million

ops/s at the same latency. Therefore, an approach that combines normal lookups/updates

with Splinter’s extensions is the best for performance. The normal lookups do not incur

isolation overhead (no matter how low), and the extensions reduce the number of round-

8

trips. In comparison, FaRM’s [28] implementation of TAO performs 6.3 million ops/s on 32

threads with an average latency of 41 microseconds. Splinter’s approach, which performs

0.4 million ops/s per thread, is competitive with FaRM’s RDMA based approach, which

performs 0.2 million ops/s per thread.

CHAPTER 2

FAST DATA MIGRATION

The last decade of computer systems research has yielded efficient scale-out in-memory

stores with throughput and access latency thousands of times better than conventional

stores. Today, even modest clusters of these machines can execute billions of operations per

second with access times of 6 µs or less [28, 96]. These gains come from careful attention to

detail in dispatch and request processing, so these systems often start with stripped-down

designs to achieve performance goals. For these systems to be practical in the long-term,

they must evolve to include many of the features that conventional data center and cloud

storage systems have while preserving their performance benefits.

To that end, we present Rocksteady, a fast reconfiguration system for the RAMCloud

scale-out in-memory store. Rocksteady facilitates cluster scale-up, scale-down, and load

rebalancing with a low-overhead and flexible approach that allows data to be migrated at

arbitrarily fine-grained boundaries and does not require any normal-case work to partition

records. Our measurements show that Rocksteady can improve the efficiency of clustered

accesses and index operations by more than 4×: operations that are common in many real-

world, large-scale systems [22, 92]. Several works address the general problem of online (or

live) data migration for scale-out stores [6, 22, 23, 25, 30, 31, 121]. However, hardware trends

and the specialized needs of an in-memory key-value store make Rocksteady’s approach

unique:

1. Low-latency Access Times: RAMCloud services requests in 6 µs, and predictable,

low-latency operation is its primary benefit. Rocksteady’s focus is on 99.9th-

percentile response times but with 1,000× lower response times than other tail

latency focused systems [25]. For clients with high fan-out requests, even

a millisecond of extra tail latency would destroy client-observed performance.

Migration must have minimum impact on access latency distributions.

10

2. Growing DRAM Storage: Off-the-shelf data center machines pack 256 to 512 GB per

server with terabytes coming soon. Migration speeds must grow along with DRAM

capacity for load balancing and reconfiguration to be practical. Today’s migration

techniques would take hours to move a fraction of a single machine’s data, making

them ineffective for scale-up and scale-down of clusters.

3. High Bandwidth Networking: Today, fast in-memory stores use 40 Gbps networks

with 200 Gbps [81] arriving in 2017. Ideally, with data in memory, these systems

would be able to migrate data at full line rate, but there are many challenges.

For example, we find that these network cards (NICs) struggle with the scattered,

fine-grained objects typical to in-memory stores (Section 2.2.2). Even with the

most straightforward migration techniques, moving data at line-rate would severely

degrade normal-case request processing.

In short, the faster and less disruptive we can make migration, the more often we can

afford to use it, making it easier to exploit locality and scaling for efficiency gains.

Besides hardware, three aspects of RAMCloud’s design affect Rocksteady’s approach;

it is a high-availability system, focuses on low-latency operation, and its servers internally

(re)arrange data to optimize memory utilization and garbage collection. These aspects lead

to the following three design goals for Rocksteady:

1. Pauseless: RAMCloud must be available at all times [94], so Rocksteady can never

take tables offline for migration.

2. Lazy Partitioning: For load balancing, servers in most systems internally pre-

partition data to minimize overhead at migration time [25, 28]. Rocksteady rejects

this approach for two reasons. First, deferring all partitioning until migration time

lets Rocksteady make partitioning decisions with full information at hand; a set of

predefined splits never constrains it. Second, DRAM-based storage is expensive;

during regular operation, RAMCloud’s log cleaner [107] continually reorganizes

data physically in memory to improve utilization and minimize cleaning costs.

Forcing a partitioning on server state would harm the cleaner’s efficiency, which is

key to making RAMCloud cost-effective.

11

3. Low Impact With Minimum Headroom: Migration increases load on the source

and target servers. This increase is particularly problematic for the source since

RAMCloud might initiate migration to cope with increasing load. Efficient

use of hardware resources is critical during migration; preserving headroom for

rebalancing increases the system’s cost directly.

Four key ideas allow Rocksteady to meet these goals:

1. Adaptive Parallel Replay: For servers to keep up with fast networks during

migration, Rocksteady fully pipelines and parallelizes all migration phases between

the source and target servers. For example, target servers spread incoming data

across idle cores to speed up index reconstruction, but migration operations yield

to client requests for data to minimize disruption.

2. Exploit Workload Skew to Create Source-side Headroom: Rocksteady prioritizes

migration of hot records. This prioritization quickly shifts some load with minimal

impact for typical skewed workloads, which creates headroom on the source to allow

faster migration with less disruption.

3. Lineage-based Fault Tolerance: Each RAMCloud server logs updated records in a

distributed, striped log, also kept (once) in-memory to service requests. A server

does not know how its contents will be partitioned during migration, so records

are intermixed in memory and storage. This complicates fault tolerance during

migration: it is expensive to synchronously reorganize on-disk data to move records

from the scattered chunks of one server’s log into the scattered chunks of another’s.

Rocksteady takes inspiration from Resilient Distributed Datasets [132]; servers can

take dependencies on portions of each others’ recovery logs, allowing them to safely

reorganize storage asynchronously.

4. Optimization for Modern NICs: Fast migration with tight tail latency bounds

requires careful attention to hardware at every point in the design; any “hiccup” or

extra load results in latency spikes. Rocksteady uses kernel-bypass for low overhead

migration of records; the result is a fast transfer with reduced CPU load, reduced

memory bandwidth load, and more stable normal-case performance.

12

This chapter starts by motivating Rocksteady (Section 2.1) and quantifying the gains it

can achieve. Then, it shows why state-of-the-art migration techniques are insufficient for

RAMCloud, including a breakdown of why RAMCloud’s simple, preexisting migration

is inadequate (Section 2.1.3). This chapter then describes Rocksteady’s full design

(Section 2.2), including its fault tolerance strategy, and evaluates its performance with an

emphasis on migration speed and tail latency impact (Section 2.3). Compared to prior

approaches, Rocksteady transfers data an order of magnitude faster (> 750 MB/s) with

median and tail latencies 1,000× lower (< 40 µs and 250 µs, respectively). In general,

Rocksteady’s ability to use any available core for any operation is crucial for both tail

latency and migration speed.

2.1 Background and Motivation
RAMCloud [96] is a key-value store that keeps all data in DRAM at all times and is

designed to scale across thousands of commodity data center servers. Each server can

service millions of operations per second, but its focus is on low access latency. End-to-end

read and durable write operations take just 6 µs and 15 µs, respectively, on our hardware

(Section 2.3).

Each server (Figure 2.1) operates as a master, which manages RAMCloud objects in its

DRAM and services client requests, and a backup, which stores redundant copies of objects

from other masters on its local disk. Each cluster has one quorum-replicated coordinator

that manages cluster membership and table-partition-to-master mappings [93].

RAMCloud only keeps one copy of each object in memory to avoid replication in

DRAM, which is expensive; it logs redundant copies to (remote) flash. It provides

high availability with a fast distributed recovery that sprays the objects previously

hosted on a failed server across the cluster in 1 to 2 seconds [94], restoring access to

them. RAMCloud manages in-memory storage using an approach similar to that of

log-structured filesystems, which allows it to sustain 80-90% memory utilization with high

performance [107].

RAMCloud’s design and data model tightly intertwine with load balancing and

migration. Foremost, RAMCloud is a simple variable-length key-value store; its key-space

is divided into unordered tables, and tables can be broken into tablets that reside on

13

different servers. Objects can be accessed by their primary (byte string) key but ordered

secondary indexes can also be constructed on top of tables [55]. Like tables, secondary

indexes can be split into indexlets to scale them across servers. Indexes contain primary

key hashes rather than records, so tables and their indexes can be scaled independently

and need not be colocated (Figure 2.2). Clients can issue multiread and multiwrite requests

that fetch or modify several objects on one server with a single request. They can also issue

externally consistent and serializable distributed transactions [64].

2.1.1 Why Load Balance?

All scale-out stores need some way to distribute load across servers. Most systems

today use some form of consistent hashing [25, 115, 122]. Consistent hashing is simple,

keeps the key-to-server mapping compact, supports reconfiguration, and spreads load

fairly well even as workloads change. However, its load spreading is also its drawback;

even in-memory stores benefit significantly from exploiting access locality.

In RAMCloud, for example, colocating access-correlated keys benefits

multiget/multiput operations, transactions, and range queries. Transactions can benefit

significantly if all affected keys can be colocated since synchronous, remote coordination

for two-phase commit [2, 64] can be avoided. Multioperations and range queries benefit

in a more subtle but still important way. If all requested values live together on the same

machine, a client can issue a single remote procedure call (RPC) to a single server to get the

values. If the values are divided among multiple machines, the client must issue requests

to all of the involved machines in parallel. From the client’s perspective, the response

latency is similar, but the overall load induced on the cluster is significantly different.

Figure 2.3 explores this effect. It consists of a microbenchmark run with seven servers

and 14 client machines. Clients issue back-to-back multiget operations evenly across the

cluster, each for seven keys at a time. In the experiment, clients vary which keys they

request in each multiget to vary how many servers they must issue parallel requests to,

but all servers still handle the same number of requests as each other. At Spread 1, all of

the keys for a specific multiget come from one server. At Spread 2, 6 keys per multiget

come from one server, and the seventh key comes from another server. At Spread 7, each

of the seven keys in the multiget is serviced by a different server.

14

When multigets involve two servers rather than one, the cluster-wide throughput

drops 23% even though no resources have been removed from the cluster. The bottom

half of the figure shows the reason. Each server has a single dispatch core that polls the

network device for incoming messages and hands-off requests to idle worker cores. With

high locality, the cluster is only limited by how quickly worker cores can execute requests.

When each multiget results in requests to two servers, the dispatch core load doubles and

saturates, leaving the workers idle. The dotted line shows the throughput of a single

server. When each multiget must fetch data from all seven servers, the entire cluster’s

aggregate performance barely outperforms a single machine.

Overall, the experiment shows that, even for small clusters, minimizing tablet splits

and maximizing locality has a significant benefit, in this case, up to 4.3×. Our findings

echo recent trends in scale-out stores that replicate to minimize multiget “fan-out” [92] or

give users explicit control over data placement to exploit locality [22].

Load imbalance has a similar effect on another common case: indexes. Index ranges

are especially prone to hotspots, skew shifts, and load increases that require splits and

migration. Figure 2.4 explores this sensitivity on a cluster with a single table and secondary

index. The table contains one million 100 B records, each with a 30 B primary and a 30 B

secondary key. Clients issue short four-record scans over the index with the start key

chosen from a Zipfian distribution with skew θ = 0.5. Figure 2.4 shows the impact of

varying offered client load on the 99.9th percentile scan latency.

For a target throughput of 1 million objects per second, it is sufficient (for a 99.9th

percentile access latency of 100 µs) and most efficient (dispatch load is lower) to have

the index and table on one server each, but this breaks down as load increases. At higher

loads, 99.9th percentile latency spikes, and more servers are needed to bound tail latency.

Splitting the index over two servers improves throughput and restores low access latency.

However, efficiently spreading the load is not straightforward. Indexes are range

partitioned, so any single scan operation is likely to return hashes using a single indexlet.

Tables are hash partitioned, so fetching the actual records will likely result in an RPC to

many backing tablets. As a result, adding tablets for a table might increase throughput,

but it also increases dispatch core load since, cluster-wide, it requires more RPCs for the

same work.

15

Figure 2.4 shows that neither minimizing nor maximizing the number of servers for

the indexed table is the best under high load. Leaving the backing table on one server

and spreading the index over two servers increases throughput at 100 µs 99.9th percentile

access latency by 54% from 1.3 to 2.0 million objects per second. Splitting both the backing

table and the index over two servers gives 6.3% worse throughput and increases dispatch

load by 26%.

Overall, reconfiguration is essential to meet SLAs (service level agreements), provide

peak throughput, and minimize load as workloads grow, shrink, and change. Evenly

spreading load is a nongoal as long as SLAs are met; approaches like consistent hashing

can throw away (sometimes large factor) gains from exploiting locality.

2.1.2 The Need for (Migration) Speed

Data migration speed dictates how fast a cluster can adapt to changing workloads.

Even if workload shifts are known in advance (like diurnal patterns), if reconfiguration

takes hours, then scaling up and down to save energy or to do other work becomes

impossible. Recent per-server DRAM capacity growth has been about 33-50% per year [39],

making things harder; each server hosts an ever-increasing amount of data that may need

to move when the cluster is reconfigured.

A second hardware trend is encouraging; per-host network bandwidth has kept up

with DRAM growth in recent years [42], so hardware itself does not limit fast migration.

For example, an unrealistically large migration that evacuates half of the data from a

512 GB storage server could complete in less than a minute at line-rate (5 GB/s or more).

Unfortunately, state-of-the-art migration techniques have not kept up with network

improvements. They move data at a few megabytes per second to minimize the impact

on ongoing transactions, and they focus on preserving transaction latencies on the order

of tens of milliseconds [30]. These systems would take more than 16 hours to migrate

256 GB of data, and small migrations of 10 GB would still take more than half an

hour. Furthermore, modern in-memory systems deliver access latencies more than 1,000×

lower: in the range of 5 to 50 µs for small accesses, transactions, or secondary index

lookups/scans. If the network is not a bottleneck for migration, then what is?

16

2.1.3 Barriers to Fast Migration

RAMCloud has a simple, preexisting mechanism that allows tables to be split and

migrated between servers. During regular operation, each server stores all records in an

in-memory log. The log is incrementally cleaned; it is never checkpointed, and a full copy

of it always remains in memory. When migrating a tablet, the source iterates over all of

the entries in its in-memory log. It copies the values that are being migrated into staging

buffers for transmission to the target. The target receives these buffers and performs a

form of logical replay as it would during recovery. It copies the received records into its

log, rereplicates them, and updates its in-memory hash table, which serves as its primary

key index. Only after all of the records have been transferred is tablet ownership switched

from the source to the target.

This simple mechanism is faster than most approaches, but it is still orders of

magnitude slower than what hardware can support – Figure 2.5 breaks down its

bottlenecks. The experiment shows the effective migration throughput between a single

loaded source and unloaded target server during the migration of 7 GB of data. All of the

servers are interconnected via 40 Gbps (5 GB/s) links to a single switch.

The ”Full” line shows migration speed when the whole migration protocol is used.

The source scans its log and sends records that need to be migrated; the target replays the

received records into its log and rereplicates them on backups. In steady-state, migration

transfers about 130 MB/s.

In ”Skip Re-Replication,” the target skips backing up the received data in its replicated

log. This setup is unsafe since the target might accept updates to the table after it

has received all data from the source. If the target crashes, its recovery log would be

missing the data received from the source, so the received table would be recovered to an

inconsistent state. Even so, migration only reaches 180 MB/s. This experiment shows that

the logical replay used to update the hash table on the target is a significant bottleneck in

migration.

”Skip Replay on Target” does the full source-side processing of migration and transmits

the data to the target, but the target skips replay and replication. This setup raises

migration performance to 600 MB/s, more than a 3× increase in migration rate. Even

so, it shows that the source side is also an impediment to fast migration. The hosts

17

can communicate at 5 GB/s, so the link is still only about 10% utilized. At this

speed, rereplication becomes a problem; RAMCloud’s existing log replication mechanism

bottlenecks at around 380 MB/s on our cluster.

Finally, ”Skip Tx to Target” performs all source-side processing and skips transmitting

the data to the target, and ”Skip Copy for Tx” only identifies objects that need to be

migrated and skips all further work. Overall, copying the identified objects into staging

buffers to be posted to the transport layer (drop from 1,150 MB/s to 710 MB/s) has a more

significant impact than the actual transmission itself (drop from 710 MB/s to 600 MB/s).

2.1.4 Requirements for a New Design

These bottlenecks give the design criteria for Rocksteady.

1. No Synchronous Rereplication: Waiting for data to be rereplicated by the target

server wastes CPU cycles and burns memory bandwidth. Rocksteady’s approach

is inspired by lineage [132]; a target server takes a temporary dependency on the

source’s log data to safely eliminate log replication from the migration fast-path

(Section 2.2.4).

2. Immediate Transfer of Ownership: RAMCloud’s migration takes minutes or hours.

During this time, no load can be shifted away from the source because the target

cannot safely take ownership until all the data has been rereplicated. Rocksteady

immediately and safely shifts ownership from the source to the target (Section 2.2).

3. Parallelism on Both the Target and Source: Log replay need not be single-threaded.

A target is likely to be under-loaded, so parallel replay makes sense. Rocksteady’s

parallel replay can incorporate log records at the target at more than 3 GB/s

(Section 2.3.5). Similarly, source-side migration operations should be pipelined and

parallel. Parallelism on both ends requires care to avoid contention.

4. Load-adaptive Replay: Rocksteady’s migration manager minimizes impact on

regular request processing with fine-grained low-priority tasks [65, 97]. Rocksteady

also incorporates into RAMCloud’s transport layer to minimize jitter caused by

background migration transfers (Section 2.2.1).

18

2.2 Rocksteady Design
To keep its goal of fast migration that retains 99.9th percentile access latencies of a few

hundred microseconds, Rocksteady is fully asynchronous at both the migration source and

target. It uses modern kernel-bypass and scatter-gather DMA for zero-copy data transfer

when supported. It also uses pipelining and adaptive parallelism at both the source and

target to speed transfer while yielding to normal-case request processing.

Migration in Rocksteady is driven by the target, which pulls records from the source.

This approach places most of the complexity, work, and state on the target, eliminating

the bottleneck of synchronous replication (Section 2.1.3). In most migration scenarios, the

source is in a state of overload or near-overload, so we must avoid giving it more work to

do. The second advantage of this arrangement is that it meets our goal of immediately

transferring record ownership. As soon as migration begins, the source only serves a

request for each of the affected records at most once more. This approach makes the

load-shedding effects of migration immediate. Finally, target-driven migration allows

both the source and the target to control the migration rate, fitting with our need for

load-adaptive migration and ensuring that cores are never idle unless migration must be

throttled to meet SLAs.

The heart of Rocksteady’s fast migration is its pipelined and parallelized record

transfer. Figure 2.6 gives an overview of this transfer. In the steady-state of migration, the

target sends pipelined asynchronous Pull RPCs to the source to fetch batches of records

(¬). The source iterates down its hash table to find records for transmission (­); it posts

the record addresses to the transport layer, which transmits the records directly from the

source log via DMA if the underlying hardware supports it (®). Whenever cores are

available, the target schedules the replay of the records from any Pulls that have been

completed. The replay process incorporates the records into the target’s in-memory log

and links them into the target’s hash table (¯).

A client initiates migration: it does so by first splitting a tablet, then issuing a

MigrateTablet RPC to the target to start the migration. Rocksteady immediately transfers

ownership of the tablet’s records to the target, which begins handling all requests for them.

Writes can be serviced immediately; reads can only be serviced after the records requested

have been migrated from the source. If the target receives a request for a record that it

19

does not yet have, the target issues a PriorityPull RPC to the source to fetch it and

tells the client to retry the operation after randomly waiting a few tens of microseconds.

PriorityPull responses are processed identically to Pulls, but they fetch specific records,

and the source and target prioritize them over bulk Pulls.

This approach to PriorityPulls favors immediate load reduction at the source. It is

especially effective if access patterns are skewed since a small set of records constitutes

much of the load: in this case, the source sends one copy of the “hot” records to the target

early in the migration, then it does not need to serve any more requests for those records.

In fact, PriorityPulls can accelerate migration. At the start of migration, they quickly

create the headroom needed on the overloaded source to speed parallel background Pulls

and help hide Pull costs.

Sources keep no migration state, and their migrating tablets are immutable. All the

source needs to keep track of is the fact that the tablet is being migrated. If it receives

a client request for a record in a migrating tablet, it returns a status indicating that it no

longer owns the tablet, causing the client to re-fetch the coordinator’s tablet mapping.

2.2.1 Task Scheduling, Parallelism, and QoS

The goal of scheduling within Rocksteady is to keep cores on the target as busy as

possible without overloading cores on the source, where overload would result in SLA

violations.

To understand Rocksteady’s approach to parallelism and pipelining, one must first

understand scheduling in RAMCloud. RAMCloud uses a threading model that avoids

preemption: in order to dispatch requests within a few microseconds, it cannot afford

the disruption of context switches [96]. One core handles dispatch; it polls the network

for messages, and it assigns tasks to worker cores or queues them if no workers are idle.

Each core runs one thread, and running tasks are never preempted (which would require

a context-switch mechanism). Priorities are handled in the following fashion: if there is

an available idle worker core when a task arrives, the task is run immediately. If no cores

are available, the task is placed in a queue corresponding to its priority. When a worker

becomes available, if there are any queued tasks, it is assigned a task from the front of the

highest-priority queue with any entries.

20

RAMCloud’s dispatch/worker model gives four benefits for migration. First,

migration blends in with background system tasks like garbage collection and (re-

)replication. Second, Rocksteady can adapt to system load, ensuring minimal disruption

to regular request processing while migrating data as fast as possible. Third, since the

source and target are decoupled, workers on the source can always be busy collecting

data for migration, while workers on the target can always make progress by replaying

earlier responses. Finally, Rocksteady makes no assumptions of locality or affinity; a

migration-related task can be dispatched to any worker, so any idle capacity on either end

can be put to use.

2.2.1.1 Source-side Pipelined and Parallel Pulls

The source’s only task during migration is to respond to Pull and

PriorityPull messages with sufficient parallelism to keep the target busy. While

concurrency would seem simple to handle, there is one challenge that complicates the

design. A single Pull can not request a fixed range of keys since the target does not

know ahead of time how many keys within that range will exist in the tablet. A Pull of a

fixed range of keys could contain too many records to return in a single response, which

would violate the scheduling requirement for short tasks. Alternatively, it could contain

no records at all, which would result in Pulls that are pure overhead. The Pull RPC must

be efficient regardless of whether the tablet is sparse or dense. One solution is for each

Pull to return a fixed amount of data. The amount can be chosen to be small enough to

avoid occupying source worker cores for long periods but large enough to amortize the

fixed cost of RPC dispatch.

However, this approach hurts concurrency: each new pull needs state recording the

last pulled record so that the pull can continue from where it left off. The target could

remember the last key it received from the previous pull and use that as the starting point

for the next pull, but this would prevent it from pipelining its pulls. It would have to wait

for one to fully complete before it could issue the next, making network round trip latency

into a significant bottleneck. Alternately, the source could track the last key returned for

each pull, but this has the same problem. Neither approach allows parallel Pull processing

on the source, which is crucial for fast migration.

21

The target solves this problem by logically partitioning the source’s key-hash space. It

only issues concurrent Pulls if they are for disjoint regions of the source’s key-hash space

(and, consequently, disjoint regions of the source’s hash table). Figure 2.7 shows how this

works. Since round-trip delay is similar to source pull processing time, a small constant

factor more partitions than worker cores are sufficient for the target to keep any number

of source workers running fully-utilized.

The source attempts to meet its SLA requirements by prioritizing regular client

reads and writes over Pull processing: the source can essentially treat migration as a

background task and prevent it from interfering with foreground tasks. It is worth noting

that the source’s foreground load typically immediately drops when migration starts

since Rocksteady has moved ownership of the (likely hot) migrating records to the target

already; this leaves capacity on the source that is available for the background migration

task. PriorityPulls are given priority over client traffic since they represent the target

servicing a client request of its own.

2.2.1.2 Target-side Pull Management

Since the source is stateless, a migration manager at the target tracks all progress

and coordinates the entire migration. The migration manager runs as an asynchronous

continuation on the target’s dispatch core [118]; it starts Pulls, checks for their completion,

and enqueues tasks that replay (locally process) records for Pulls that have completed.

At the start of migration, the manager logically divides the source server’s key-hash

space into partitions (Section 2.2.1.1). It then asynchronously issues Pull requests to the

source, each belonging to a different partition of the source hash space. As Pulls complete,

it pushes the records to idle workers, and it issues a new Pull. If all workers on the target

are busy, then no new Pull is issued, which acts as built-in flow control for the target node.

In that case, new Pulls are issued when workers become free and begin to process records

from already completed Pulls.

Records from completed pull requests are replayed in parallel into the target’s hash

table on idle worker cores. Pull requests from distinct partitions of the hash table naturally

correspond to different partitions of the target’s hash table as well, which mitigates

contention between parallel replay tasks. Figure 2.8 shows how the migration manager

22

“scoreboards” Pull RPCs from different hash table partitions and hands responses over to

idle worker cores. Depending on the target server’s load, the manager naturally adapts

the number of in-progress Pull RPCs, as well as the number of in-progress replay tasks.

Besides parallelizing Pulls, performing work at the granularity of distinct hash table

partitions also hides network latency by allowing Rocksteady to pipeline RPCs. Whenever

a Pull RPC completes, the migration manager first issues a new, asynchronous Pull

RPC for the next chunk of records on the same partition. Having a small number

of independent partitions is sufficient to overlap network delay with source-side Pull

processing completely.

2.2.1.3 Parallel Replay

Replaying a Pull response consists of incorporating the records into the master’s

in-memory log and inserting references to the records in the master’s hash table. Using

a single core to replay would limit migration to a few hundred megabytes per second

(Section 2.3.5), but a parallel approach where cores share a single log would also break

down due to contention. Eliminating contention is key for fast migration.

Rocksteady does this by using per-core side logs off of the target’s main log. Each side

log consists of independent segments of records; each core can replay records into its side

log segments without interference. At the end of migration, each side log’s segments are

lazily replicated, and then the side log is committed into the main log by appending a small

metadata record to the main log. RAMCloud’s log cleaner needs accurate log statistics

to be effective; side logs also avoid contention on statistics counters by accumulating

information locally and updating the global log statistics only when they are committed to

the main log.

2.2.2 Exploiting Modern NICs

All data transfer in Rocksteady takes place through RAMCloud’s RPC layer allowing

the protocol to be both transport and hardware agnostic. Target initiated one-sided RDMA

(Remote Direct Memory Access) reads may seem to promise fast transfers without the

source’s involvement. However, they break down because the records under migration

are scattered across the source’s in-memory log. RDMA reads support scatter-gather DMA

(Direct Memory Access), but reads can only fetch a single contiguous chunk of memory

23

from the remote server. That is, a single RDMA read scatters the fetched value locally;

it cannot gather multiple remote locations with a single request. As a result, an RDMA

read initiated by the target could only return a single data record per operation unless

the source preaggregated all records for migration beforehand, which would undo the

zero-copy benefits of RDMA. Additionally, one-sided RDMA would require the target to

be aware of the source’s log’s structure and memory addresses. This would complicate

synchronization, for example, with RAMCloud’s log cleaner. Epoch-based protection

can help (normal-case RPC operations like read and write synchronize with the local

log cleaner this way), but extending epoch protection across machines would couple the

source and target more tightly.

Rocksteady never uses one-sided RDMA, but it uses scatter-gather DMA [96] when

supported by the transport and the NIC to transfer records from the source without

intervening copies. Rocksteady’s implementation always operates on references to the

records rather than making copies to avoid unnecessary overhead.

All experiments in this chapter were run with a DPDK driver that currently copies

all data into transmit buffers. This setup creates one more copy of records than strictly

necessary on the source. Experiments run on Reliable Connected Infiniband with zero-

copy shows similar results. This similarity is in large part because Intel’s DDIO support

means that the final DMA copy from Ethernet frame buffers is from the CPU cache [45].

Transition to zero-copy will reduce memory bandwidth consumption [56], but source-side

memory bandwidth is not saturated during migration.

2.2.3 Priority Pulls

PriorityPulls work similarly to regular Pulls but are triggered on-demand by

incoming client requests. A PriorityPull targets specific key hashes, so it does not

require the coordination that Pulls do through partitioning. The crucial consideration for

PriorityPulls is how to manage clients and worker cores that are waiting. A simple

approach is for the target to issue a synchronous PriorityPull to the source when

servicing a client read RPC for a key that has not been moved yet. However, this would

slow migration and hurt client-observed latency and throughput. PriorityPulls take

several microseconds to complete, so stalling a worker core on the target to wait for the

24

response takes cores away from migration and regular request processing. Thread context

switch also is not an option since the delay is just a few microseconds, and context switch

overhead would dominate. Individual, synchronous PriorityPulls would also initially

result in many (possibly duplicate) requests being forwarded to the source, delaying

source load reduction.

Rocksteady solves this in two ways. First, the target issues PriorityPulls

asynchronously and then immediately returns a response to the client telling it to retry

the read after the time when the target expects it will have the value. This frees up the

worker core at the target to process requests for other keys or to replay Pull responses.

Second, the target batches the hashes of client-requested keys that have not yet arrived,

and it requests the batch of records with a single PriorityPull. While a PriorityPull

is in flight, the target accumulates new key hashes of newly requested keys, and it issues

them when the first PriorityPull completes. Deduplication ensures that PriorityPulls

never request the same key hash from the source twice. If the hash for a new request was

part of an already in-flight PriorityPull or in the next batch accumulating at the target,

it is discarded. Batching is key to shedding source load quickly since it ensures that the

source never serves a request for a key more than once after migration starts, and it limits

the number of small requests that the source has to handle.

2.2.4 Lineage for Safe, Lazy Rereplication

Avoiding synchronous rereplication of migrated data creates a challenge for fault

tolerance if tablet ownership is transferred to the target at the start of migration. If the

target crashes in the middle of a migration, then neither the source nor the target would

have all of the records needed to recover correctly; the target may have serviced writes

for some of the records under migration since ownership is transferred immediately at the

start of migration. Therefore, neither the distributed recovery log of the source nor the

target contains all the information needed for correct recovery. Rocksteady takes a unique

approach to solving this problem that relies on RAMCloud’s distributed fast recovery,

which can restore a crashed server’s records into memory in 1 to 2 seconds.

To avoid synchronous rereplication of all of the records as they are transmitted from the

source to the target, the migration manager registers a dependency of the source server on

25

the tail of the target’s recovery log at the cluster coordinator. The target must already

contact the coordinator to notify it of the ownership transfer, so this adds no additional

overhead. The dependency is recorded in the coordinator’s tablet metadata for the source.

It consists of two integers: one indicating which master’s log the source depends on

(the target’s), and another indicating the offset into the log where the dependency starts.

Once the migration has been completed and all sidelogs have been committed, the target

contacts the coordinator requesting that the dependency be dropped.

If either the source or the target crashes during migration, Rocksteady transfers

ownership of the data back to the source. To ensure the source has all of the target’s

updates, the coordinator induces recovery of the source server, which logically forces

replay of the target’s recovery-log tail along with the source’s recovery log. This approach

keeps things simple by reusing the recovery mechanism at the expense of extra recovery

effort (twice as much as for a normal recovery) in the rare case that a machine involved in

migration crashes.

2.3 Evaluation
To evaluate Rocksteady, we focused on five key questions:

1. How fast can Rocksteady go and meet tight SLAs? Section 2.3.2 shows that

Rocksteady can sustain migration at 758 MB/s with 99.9th percentile access latency

of lesser than 250 µs.

2. Does lineage accelerate migration? Lineage and deferred log replication allow

Rocksteady to migrate data 1.4× faster than synchronous rereplication while shifting

load from the source to the target more quickly (Section 2.3.2).

3. What is the impact at the source and target? Section 2.3.3 shows that regardless of

workload skew, Rocksteady migrations cause almost no increase in source dispatch

load, which is the source’s most scarce resource for typical read-heavy workloads.

Background Pulls add about 45% worker CPU utilization on the source, and

Rocksteady effectively equalizes CPU load on the source and target. Dispatch load

due to the migration manager on the target is minimal.

26

4. Are asynchronous batched priority pulls effective? Section 2.3.4 shows that

asynchronous priority pulls are essential in two ways. First, synchronous priority

pulls would increase both dispatch and worker load during migration due to

the increased number of RPCs to the source and the wasted effort waiting for

PriorityPull responses. Second, asynchronous batched PriorityPulls reduce load

at the source fast enough to help hide the extra load due to background Pulls on the

source, which is key to Rocksteady’s fast transfer.

5. What limits migration? Section 2.3.5 shows that the source and target can

send/consume small records at 5.7 GB/s and 3 GB/s, respectively; for small records,

target replay limits migration more than networking (5 GB/s today). Target worker

cores spend 1.8 to 2.4×more cycles processing records during migration than source

worker cores.

2.3.1 Experimental Setup

All evaluation was done on a 24 server Dell c6220 cluster on the CloudLab testbed [106]

(Table 2.1). RAMCloud is transport agnostic; it offers RPC over many hardware and

transport protocol combinations. For these experiments, servers were interconnected

with 40 Gbps Ethernet and Mellanox ConnectX-3 cards; hosts used DPDK [44] and the

mlx4 poll-mode driver for kernel-bypass support. Each RAMCloud server used one core

solely as a dispatch core to manage the network; it used 12 additional cores as workers to

process requests; the remaining three cores helped prevent interference from background

threads. The dispatch core runs a user-level reliable transport protocol on top of Ethernet

that provides flow control, retransmission, among other features, without the overhead of

relying on the kernel TCP stack.

To evaluate migration under load, eight client machines run the YCSB-B [18] workload

(95% reads, 5% writes, keys chosen according to a Zipfian distribution with θ = 0.99),

which accesses a table on the source server. The table consists of 300 million 100 B record

payloads with 30 B primary keys constituting 27.9 GB of record data consuming 44.4 GB

of in-memory log on the source. Clients offer a nearly open load to the cluster sufficient to

keep a single server at 80% (dispatch) load. While the YCSB load is running, a migration

is triggered that live-migrates half of the source’s records to the target.

27

Rocksteady was configured to partition the source’s key-hash space into eight parts,

with each Pull returning 20 KB of data. Pulls were configured to have the lowest

priority in the system. PriorityPulls returned a batch of at most 16 records from the

source and were configured to have the highest priority among RPCs in the system.

The version of Rocksteady used for the evaluation can be accessed online on GitHub at

https://github.com/utah-scs/RAMCloud/tree/rocksteady-sosp2017.

2.3.2 Migration Impact and Ownership

Figures 2.9 and 2.10 (a) show Rocksteady’s impact from the perspective of the YCSB

clients. Migration takes 30 seconds and transfers at 758 MB/s. Throughput drops when

ownership is transferred at the start of migration since the clients must wait for records to

arrive at the target. As records are being transferred, 99.9th percentile end-to-end response

times start at 250 µs and taper back down to 183 µs as hot records from PriorityPulls

arrive at the target. After migration, median response times drop from 10.1 µs to 6.7 µs

since each server’s dispatch is under less load. Likewise, after migration moves enough

records, throughput briefly exceeds the before-migration throughput since client load is

open, and some requests are backlogged.

Figures 2.9 and 2.10 (b) show that PriorityPulls are essential to Rocksteady’s design.

Without PriorityPulls, client requests for a record cannot complete until they are moved

by the Pulls, resulting in requests that cannot complete until the migration is done. Only

a small fraction of requests complete while the migration is ongoing, and throughput

is elevated after migration for a more extended period. In practice, this would result

in timeouts for client operations. Migration speed is 19% faster (904 MB/s) without

PriorityPulls enabled.

Instead of transferring ownership to the target at the start of migration, another option

is to leave ownership at the source during migration while synchronously re-replicating

migrated data at the target. Figures 2.9 and 2.10 (c) explore this approach. The main

drawback is that it cannot take advantage of the extra resources that the target provides.

Similar to the case above, source throughput decreases under migration load, and clients

eventually fall behind. For long migrations, this can lead to client timeouts in a fully open

load since throughput would drop below the offered load for the duration of migration.

28

Additionally, migration suffers a 27.7% slowdown (758 MB/s down to 549 MB/s), and the

impact on the 99.9th percentile access latency is worse than the full Rocksteady protocol

because of the rereplication load generated by the target interfering with the replication

load generated by writes at the source. For larger RAMCloud clusters, such interference

will not be an issue, and one would expect the 99.9th percentile to be similar to Rocksteady.

2.3.3 Load Impact

Figure 2.11 (a) shows Rocksteady immediately equalizes dispatch load on the source

and target. Worker and dispatch load on the target jumps immediately when migration

starts, offloading the source. Clients refresh their stale tablet mappings after migration

starts. Dispatch is immediately equalized because a) exactly half of the table ownership

has been shifted to the target, and b) the migration manager is asynchronous and requires

little CPU.

A key goal of Rocksteady is to shift load quickly from the source to the target. Most

workloads exhibit some skew, but the extent of that skew impacts Rocksteady’s ability to

shift load quickly. Figure 2.12 examines the extent to which Rocksteady’s effectiveness

at reducing client load is skew dependent. With no skew (uniform access, skew θ = 0),

PriorityPulls are sufficient to maintain client access to the tablet. However, low request

locality means the full load transfer only proceeds as quickly as the background Pulls can

transfer records. Overall, the results are promising when considering the source’s dispatch

load, which is its most scarce resource for typical read-heavy workloads. Regardless of

workload skew, source-side dispatch load remains relatively flat from the time migration

starts until it completes. This result means that Rocksteady’s eager ownership transfer

enabled by batched PriorityPulls makes up for any extra dispatch load the Pulls place

on the source regardless of the skew.

2.3.4 Asynchronous Batched Priority Pulls

Figures 2.13 and 2.14 compare asynchronous batched PriorityPulls with the naı̈ve,

synchronous approach when background Pulls are disabled. The asynchronous approach

does not help tail latency: 99.9th latency stays consistent at 160 µs for the rest of the

experiment, but median access latency drops to 7.4 µs immediately. On the other hand,

the synchronous approach results in median latency jitter, primarily due to workers at the

29

target waiting for PriorityPulls to return, which can be seen in the increased worker

utilization at the target (Figure 2.14b). However, 99.9th percentile access latency is lower

than the asynchronous approach since pull responses are sent to clients immediately.

PriorityPulls are critical to the goal of rapidly shifting load away from the source.

The headroom thus obtained can be used to service Pulls at the source, thereby allowing

the migration to go as fast as possible. At the same time, PriorityPulls help to maintain

tail latencies by fetching client requested data on-demand.

2.3.5 Pull and Replay Scalability

Parallel and pipelined pulls and replay are essential to migration speed that interleaves

with normal-case request processing. The microbenchmark shown in Figure 2.15 explores

the scalability of the source and target pull processing logic. In the experiment, the

source and target pull/replay logic was run in isolation on large batches of records to

stress contention and to determine the upper bound on migration speed at both ends

independently.

Overall, both the source and target can process pulls and replays in parallel with little

contention. In initial experiments, replay’s performance was limited when the target

replayed records into a single, shared in-memory log, but per-worker side logs remedy

this. Small 128 B records (like those used in the evaluation) are challenging. They require

computing hashes and checksums over many small log entries on both the source and

target. On the target, they also require many probes into the hash table to insert references,

which induces many costly cache misses. Even so, the source and target can migrate

5.7 GB/s and 3 GB/s, respectively. The source outpaces replay by 1.8 to 2.4× on the same

number of cores, so migration stresses the target more than the source. This result works

well for scaling out since the source is likely to be under an existing load that is being

redistributed to a less loaded target. For larger record sizes, pull/replay logic does not

limit migration.

2.4 Discussion
Some of the most broadly applicable lessons from Rocksteady are on the interplay

of partitioning, dispatch, and synchronization. Recent works have often partitioned

30

operations [53, 105] or sometimes just mutating operations [74] to reduce locking and

contention. Systems that strictly partition work (even only writes) are likely to have to

reconfigure more often under skew. Their access latencies also suffer since migration

must be interleaved with regular execution. RAMCloud’s dispatch can be a bottleneck,

but it can also redirect any idle CPU resources on a few microseconds timescale, which

is key to Rocksteady’s adaptive parallel replay and tight SLAs. Hardware-assisted [54],

client-assisted [74], and parallel dispatch help mitigate bottlenecks and delay the need for

migration. However, none of these can eliminate the need for cross-machine rebalancing

or the need to overlap normal execution and migration. Optimizing for normal-case

request processing can make inevitable background system tasks more costly. Designers of

in-memory systems must carefully navigate partitioning, dispatch, and locking trade-offs

when planning for heavy rebalancing operations, like migration.

Rocksteady’s safe deferred re-replication can also be applied to other systems. For

example, H-Store with the Squall [30] migration system could exploit the same idea

to improve migration throughput and access distribution impact. Squall could take a

temporary dependency on source data and backups to avoid synchronous rereplication

at the target; this would have a significant impact since rereplication blocks execution on

the whole target partition in Squall.

2.4.1 Going Even Faster

Rocksteady can migrate hundreds of megabytes per second with tight response latency,

but it still only uses a small fraction of the bandwidth provided by modern networks.

While its approach and implementation can be tuned for some gains, it is unlikely that

simple changes would result in the order-of-magnitude speed up that would be needed to

saturate the network.

To achieve such gains without destroying normal-case request processing, migration

might be limited to merely transferring large, opaque memory regions between hosts,

with little-to-no packaging or replay work on either end. This approach would require

the source to physically partition its state in fine enough units to satisfy all possible future

splits. FaRM’s data layout, for example, meets these properties [29].

Physically partitioning groups of records on key or key hash would constrain

31

RAMCloud’s log-structured memory cleaning. The cleaner minimizes cleaning CPU and

memory bandwidth load by physically colocating records that are likely to have a similar

lifetime [107]. With physical partitioning constraints, the cleaner would not be able to

optimize the hot/cold separation of objects globally. Investigating the cleaner’s sensitivity

to such partitioning could be an interesting direction since it might be able to assist in the

process of physically partitioning records.

Even if records were partitioned and could be moved at line-rate, it is possible that

RAMCloud would need network-level support in order to avoid interference between

large, fast migration transfers and fine-grained normal-case requests.

Beyond improvements in dispatch scalability, other improvements to RAMCloud’s

concurrency model could also have a significant impact on Rocksteady. Today, RAMCloud

processes requests on workers that use standard kernel threads. Coroutines or cooperative

user-level threading could both improve response distributions and efficiency [51]. If

Pull and replay operations could afford frequent yields to RAMCloud’s dispatch, heavy

operations would have less impact on normal-case request processing. Replay and Pull

operations could be coarser as well, resulting in fewer requests and lower dispatch

overheads. This optimization could allow Rocksteady to transfer data even more quickly

with the same SLAs.

2.5 Related Work
Amazon’s Dynamo [25] is a highly-available distributed key-value store that pushed

for a focus on 99.9th percentile access latency, though Rocksteady pushes for tail latency

nearly 1,000× lower even while migrating. Dynamo supported strong SLAs and

reconfiguration through a very different approach that took advantage of prepartitioning

records inside each server, replication, and weak consistency. DRAM is expensive, so

Rocksteady must not rely on in-memory replication or internal prepartitioning of records.

Distributed database live migration has received a great deal of attention, particularly

for multitenant cloud databases. Rocksteady uses many ideas from prior work like

pacing migration [6], eager transfer of ownership [30, 31], and combining on-demand and

background migration [30, 31, 109]. Others have explored holding ownership at the source

and “catching up” the target through delta records or recovery log data [23], similar to

32

RAMCloud’s original migration.

Squall [30, 121] is a state-of-the-art live migration system for the H-Store [53] scale-out

shared-nothing database. It offloads the source quickly by breaking requested tuples out

into separate units and migrating them on-demand. Under skewed loads, hot tuples

move quickly, and background transfers are paced to minimize disruption. Rocksteady

uses Squall’s combined background/tuple-level reactive pull, but it extends the approach

to RAMCloud’s more flexible parallelism model. H-Store’s strict serial execution makes

synchronizing with migration expensive; the execution of migration operations on a

partition is interlocked between the source and target and blocks regular requests. That

is, each pull from a target core can only be serviced by a specific source core; pulls and

replays must operate in isolation on a partition. Requests cannot be processed for keys

that are being pulled (or for any key in a partition where a pull is ongoing). Target cores

also spin, waiting for pull responses hurting request access latency and throughput as well

as migration speed. Compared to all prior approaches, Rocksteady transfers data an order

of magnitude faster with tail latencies 1,000× lower; in general, Rocksteady’s ability to use

any available core for any operation is critical for both tail latency and migration speed.

Rocksteady builds on recent work on recovery and dispatching for in-memory storage

that relies on kernel-bypass networking [8, 49–51, 73, 74, 89, 100]. RAMCloud’s recovery

is a form of distributed migration [94], but it is disruptive since it uses the entire cluster’s

resources to reload contents of a crashed server as fast as possible. FaRM [28, 29] relies

on in-memory triplication for redundancy, but it must re-replicate lost partitions when

a server fails. It paces recovery to a few hundred megabytes per second per server in

order to minimize performance impact. Similarly, DrTM-B [128] minimizes the impact

of reconfiguration by relying on in-memory replicas. However, replicas can become

overloaded too, so data are migrated using parallel RDMA reads. One key aspect of FaRM

is that partitions are physical: a lost partition is an opaque region of memory, so most of the

overhead of rereplication is network transfer. RAMCloud migration is more complicated

than FaRM since the source and target do not share a common partitioning or physical

memory layout.

Rocksteady’s fast parallel packaging and replay are similar to Silo’s single-server

parallel recovery [125, 133]. Silo partitions recovery logs across cores during record and

33

replay. Rocksteady’s replay does not require any particular order; any core can replay

any portion of records, which helps Rocksteady hit SLAs. In Silo, the database is also

naturally offline during replay, and recovery can consume all of the machine’s resources.

Silo’s parallel replay is state-of-the-art, but Rocksteady’s parallel replay outperforms it on

far fewer cores. This result may be because Silo must reconstruct a tree-like index rather

than a flat hash table, and filesystem I/O may induce more overhead than a NIC using

kernel-bypass.

2.6 Conclusion
Low-latency in-memory stores are designed to tolerate the heaviest request loads.

However, if they are too stripped down, they cannot deal with complex higher-level

operations such as load (re)distribution, multitenancy, and expressive data models.

Rocksteady is a migration protocol for in-memory key-value stores that avoids the need for

and overhead of in-advance state partitioning; it eliminates replication overhead from the

migration fast-path; it exploits parallelism; it exploits modern NIC hardware. Rocksteady

has a “pay-as-you-go” approach that helps avoid overloading the source during migration

using asynchronous batched on-demand pulls to shift load away from the source as

parallel background transfers proceed. In all, Rocksteady can move the entire DRAM of a

modern data center machine in a few minutes while retaining 99.9th percentile tail latency

of lesser than 250 µs.

34

Table 2.1: Experimental cluster configuration. The evaluation was carried out on a 24 node
c6220 cluster on CloudLab. Hyperthreading was disabled on all nodes. Of the 24 nodes,
one ran the coordinator, eight ran one client each, and the rest ran RAMCloud servers.

CPU 2×Xeon E5-2650v2 2.6 GHz,
16 cores in total after disabling hyperthreading

RAM 64 GB 1.86 GHz DDR3

NIC Mellanox FDR CX3 Single port (40 Gbps)

Switch 36 port Mellanox SX6036G (in Ethernet mode)

OS Ubuntu 15.04, Linux 3.19.0-16,
DPDK 16.11, MLX4 PMD, 1×1 GB Hugepage

35

Client

Master

Backup

Master

Backup

Master

Backup

Master

Backup

Client Client Client

CoordinatorData Center Fabric

Figure 2.1: The RAMCloud architecture. Clients issue remote operations to RAMCloud
storage servers. Each server contains a master and a backup. The master component
exports the DRAM of the server as a large key-value store. The backup accepts updates
from other masters and records state on disk used for recovering crashed masters. A
central coordinator manages the server pool and maps data to masters.

User Table
Hash Partitioned on uid

FirstName Index
Range Partitioned

FirstName → hash(uid)

8 Belle

2 Tiana

4 Ariel

12 Sofia

11 Anna

21 Alice

29 Nala

22 Elsa

A-B

21 11 4 8

C-Z

22 29 2 12

User Tablet 1

User Tablet 2

User Tablet 3

FirstName Indexlet 1 FirstName Indexlet 2

Figure 2.2: Index partitioning. Records are stored in unordered tables that can be split into
tablets on different servers, partitioned on the primary key hash. Indexes can be range
partitioned into indexlets; indexes only contain primary key hashes. Range scans require
first fetching a list of hashes from an indexlet, then multigets for those hashes to the tablet
servers to fetch the actual records. A lookup or scan operation is (usually) handled by one
server, but tables and their indexes can be split and scaled independently.

36

●

●

●

●

●

●

●Single Server Throughput

0

10

20

30

To
ta

l T
hr

ou
gh

pu
t

(M
il

li
on

s
of

 O
bj

ec
ts

 R
ea

d
P

er
 S

ec
on

d)

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7

Spread (Servers Involved per Multiread)

C
P

U
 L

oa
d

Core Type Worker Dispatch

Figure 2.3: The throughput and CPU load impact of access locality. When multigets always
fetch data from a single server (Spread 1), throughput is high, and worker cores operate in
parallel. When each multiget must fetch keys from many machines (Spread 7), throughput
suffers as each server becomes bottlenecked on dispatching requests.

37

● ●
●

●
● ● ●

●

●

●

●

0

50

100

150

99
.9

th
 P

er
ce

nt
il

e
L

at
en

cy
 (

µs
)

● ● ● ● ● ● ●

●
● ● ●●

0.0

0.2

0.4

0.6

0.8

1.0

0.5 1 1.5 2

Throughput (Millions of Objects Read Per Second)

To
ta

l C
lu

st
er

 D
is

pa
tc

h
L

oa
d

● 1 Indexlet, 1 Tablet 2 Indexlets, 1 Tablet 2 Indexlets, 2 Tablets

Figure 2.4: Index scaling as a function of throughput. Points represent the median over
five runs, and bars show standard error. Spreading the backing table across two servers
increases total dispatch load and the 99.9th percentile access latency for a given throughput
compared to leaving it on a single server.

38

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

Time Since Start of Migration (s)

M
ig

ra
ti

on
 R

at
e

(M
B

/s
) Part of Migration

Full

Skip Re−replication

Skip Replay on Target

Skip Tx to Target

Skip Copy for Tx

Figure 2.5: Bottlenecks when using log replay for migration. Target side bottlenecks
include logical replay and rereplication. Copying records into staging buffers at the source
has a significant impact on the rate of migration.

39

Source Master

1 Pull(tableId, nextHash) Response

Gather
ListHash

Table

In-memory Segmented Log

2

3

Target Master
Hash
Table

In-memory Segmented Log

4

Figure 2.6: Overview of Rocksteady Pulls. A Pull RPC issued by the target iterates down
a portion of the source’s hash table and returns a batch of records. This batch is then
logically replayed by the target into its in-memory log and hash table.

Source
Master

Worker
Cores

NIC

Dispatch
Core

Polling

read(A)

Hash
Table

0 8 16 24

pull(11) pull(17)

Gather
List

Gather
List

Copy
Addresses

Figure 2.7: Source pull handling. Pulls work concurrently over disjoint regions of the
source’s hash table, avoiding synchronization, and return a fixed amount of data (20 KB,
for example) to the target. Any worker core can service a Pull for any region, and all cores
prioritize normal-case requests over Pulls.

40

Target
Master Hash

Table

0 8 16 24

Worker
Cores

NIC

Dispatch
Core

Polling

replay replay read(B)

Migration
Manager

Pull Buffers

pulling

Per-Core
Side Logs

Figure 2.8: Target pull management and replay. One Pull is outstanding per source
partition. Pulled records are replayed at a lower priority than regular requests, and each
worker places records into a separate side log to avoid contention. Any worker core can
service a replay on any partition.

41

(a) Rocksteady (b) No Priority Pulls (c) Source Retains Ownership

0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
0

200

400

600

800

Time Since Start of Experiment (s)

T
hr

ou
gh

pu
t (

K
O

ps
/s

)

Figure 2.9: Running total YCSB-B throughput for (a) Rocksteady, (b) Rocksteady with no
PriorityPulls, and (c) when ownership is left at the source throughout the migration.
Dotted lines demarcate migration start and end.

(a) Rocksteady (b) No Priority Pulls (c) Source Retains Ownership

0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
5

10

100

1000

Time Since Start of Experiment (s)

R
ea

d
L

at
en

cy
 (

µs
)

Figure 2.10: Running median (dashed line) and 99.9th percentile (solid line) client-
observed access latency on YCSB-B for (a) Rocksteady, (b) Rocksteady with no
PriorityPulls, and (c) when ownership is left at the source throughout the experiment.

(a) Rocksteady (b) No Priority Pulls (c) Source Retains Ownership

D
ispatch

W
orker

0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120

0.00
0.25
0.50
0.75
1.00

0
4
8

12

Time Since Start of Experiment (s)

U
ti

li
za

ti
on

 (
A

ct
iv

e
C

or
es

)

Machine Source Target

Figure 2.11: Dispatch core and worker core utilization on both source and target for (a)
Rocksteady, (b) Rocksteady with no PriorityPulls, and (c) when ownership is left at the
source throughout the migration.

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80 100 120

Time Since Start of Experiment (s)

D
is

pa
tc

h
L

oa
d

Skew

0

0.5

0.99

1.5

Figure 2.12: Impact of workload access skew on source-side dispatch load. Batched
PriorityPulls hide the extra dispatch load of background Pulls regardless of access skew.

42

(a) Async and Batched (b) Sync and Single

0 5 10 15 20 25 30 0 5 10 15 20 25 30

5

10

100

300

Time Since Start of Experiment (s)

R
ea

d
L

at
en

cy
 (

µs
)

Figure 2.13: Median (dashed line) and 99.9th percentile (solid line) access latency
without background Pulls. Async batched PriorityPulls restore median latency almost
immediately compared to sync PriorityPulls.

(a) Async and Batched (b) Sync and Single

D
ispatch

W
orker

0 5 10 15 20 25 30 0 5 10 15 20 25 30

0.00
0.25
0.50
0.75
1.00

0
4
8

12

Time Since Start of Experiment (s)

U
ti

li
za

ti
on

 (
A

ct
iv

e
C

or
es

)

Machine Source Target

Figure 2.14: CPU Load with no background Pulls. Asynchronous batched PriorityPulls
improve dispatch and worker utilization at both the source and target compared to
synchronous Pulls that stall target worker cores.

43

Line
Rate

Line
Rate

Source Target

4 8 12 16 4 8 12 16
0

2

4

6

8

10

Number of Threads

T
hr

ou
gh

pu
t (

G
B

/s
)

Object Size 128 Byte 1024 Byte

Figure 2.15: Source and target parallel migration scalability. Source side pull logic can
process small 128 B objects at 5.7 GB/s. Target side replay logic can process small 128 B
objects at 3 GB/s. For larger objects, neither side limits migration.

CHAPTER 3

LOW COST COORDINATION

Millions of sensors, mobile applications, users, and machines now continuously

generate billions of events. These events are processed by streaming engines [15, 123] and

ingested and aggregated by state management systems (Figure 3.1). Real-time queries are

issued against this ingested data to train and update models for prediction, to analyze user

behavior, or to generate device crash reports, etc. Hence, these state management systems

are a focal point for massive numbers of events and queries over aggregated information

about them.

Recently, this has led to specialized KVSs (Key Value Stores) that can ingest and index

these events at high rates – 100 million operations (Mops) per second (s) per machine

– by exploiting many-core hardware [16, 130]. These systems are efficient if events are

generated on the same machine as the KVS, but, in practice, events need to be aggregated

from a wide and distributed set of data sources. Hence, fast indexing schemes alone

only solve part of the problem. To be practical and cost-effective, a complete system for

aggregating these events must ingest events over the network, must scale across machines

as well as cores, and must be elastic (by provisioning and reconfiguring over inexpensive

cloud resources as workloads change).

The only existing KVSs that provide similar performance [54, 71, 74, 101] rely on

application-specific hardware acceleration, making them impossible to deploy on today’s

cloud platforms. Furthermore, these systems only store data in DRAM, and they do

not scale across machines; adding support to do so without cutting into normal-case

performance is not straightforward. For example, many of them statically partition

records across cores to eliminate cross-core synchronization. This optimizes normal-case

performance, but it makes concurrent operations like migration and scale out impossible;

transferring record data and ownership between machines and cores requires a stop-the-

45

world approach due to these systems’ lack of fine-grained synchronization.

Achieving this level of performance while fulfilling all of these requirements on

commodity cloud platforms requires solving two key challenges simultaneously. First,

workloads change over time and cloud VMs fail, so systems must tolerate failure and

reconfiguration. Doing this without hurting normal-case performance at 100 Mops/s

is hard, since even a single extra server-side cache miss to check key ownership or

reconfiguration status would cut throughput by tens-of-millions of operations per second.

Second, the high CPU cost of processing incoming network packets easily dominates in

these workloads, especially since, historically, cloud networking stacks have not been

designed for high data rates and high efficiency. We show this is changing; by careful

design of each server’s data path, cloud applications can exploit transparent hardware

acceleration and offloading offered by cloud providers to process more than 100 Mops/s

per cloud virtual machine (VM).

We present Shadowfax, a new distributed KVS that transparently spans DRAM,

SSDs, and cloud blob storage while serving 130 Mops/s/VM over commodity Azure

VMs [19] using conventional Linux TCP. Beyond high single-VM performance, its unique

approach to distributed reconfiguration avoids any server-side key ownership checks

and any cross-core coordination during normal operation and data migration both in its

indexing and network interactions. Hence, it can shift load in 17 s to improve cluster

throughput by 10 Mops/s with little disruption. Compared to the state-of-the-art, it has

8× better throughput (than Seastar+memcached [111]) and scales out 6× faster (than

Rocksteady [60]).

In this chapter, we describe and evaluate three key pieces of Shadowfax that eliminate

coordination throughout the client- and server-side by eliminating cross-request and cross-

core coordination:

1. Low-cost Coordination via Global Cuts: In contrast to totally-ordered or stop-

the-world approaches used by most systems, cores in Shadowfax avoid stalling

to synchronize with one another, even when triggering complex operations like

scale-out, which require defining clear before/after points in time among concurrent

operations. Instead, each core participating in these operations – both at clients

and servers – independently decides a point in an asynchronous global cut that

46

defines a boundary between operation sequences in these complex operations. In

this chapter, we extend asynchronous cuts from cores within one process [16, 102]

to servers and clients in a cluster, and we show how they coordinate server and

client threads (through partitioned sessions) by detailing their role in Shadowfax’s

low-coordination data migration and reconfiguration protocol.

2. End-to-end Asynchronous Clients: All requests from a client on one machine to

Shadowfax are asynchronous with respect to one another all the way throughout

Shadowfax’s client- and server-side network submission/completion paths and

servers’ indexing and (SSD and cloud storage) I/O paths. This avoids all client-

and server-side stalls due to head-of-line blocking, ensuring that clients can always

continue to generate requests and servers can always continue to process them.

In turn, clients naturally batch requests, improving server-side high throughput

especially under high load. This batching also suits hardware accelerated network

offloads available in cloud platforms today further lowering CPU load and

improving throughput. Hence, despite batching, requests complete in less than

40 µs to 1.3 ms at more than 120 Mops/s/VM, depending on which transport and

hardware acceleration is chosen.

3. Partitioned Sessions, Shared Data: Asynchronous requests eliminate blocking

between requests within a client, but maintaining high throughput also requires

minimizing coordination costs between cores at clients and servers. Instead of

partitioning data among cores to avoid synchronization on record accesses [53, 74,

111, 117], Shadowfax partitions network sessions across cores; its lock-free hash

index and log-structured record heap are shared among all cores. This risks

contention when some records are hot and frequently mutated, but this is more than

offset by the fact that no software-level intercore request forwarding or routing is

needed within server VMs.

The rest of the chapter is organized as follows. We provide background on the FASTER

key-value store and its use of epochs within a machine (Section 3.1). Next, we overview

Shadowfax’s design, including partitioned client sessions with global cuts and how they

enable reconfiguration (Section 4.2). We then provide details on our parallel non-blocking

47

migration and scale-out techniques (Section 3.3). Next, we evaluate Shadowfax in detail

against other state-of-the-art shared-nothing approaches (Section 3.5), showing that by

eliminating record ownership checks and cross-core communication for routing requests

it improves per-machine throughput by 8.5× on commodity cloud VMs. We also show

it retains high throughput during migrations and scaled it to a cluster that ingests and

indexes 930 Mops/s in total, which, to the best of our knowledge, is the highest reported

throughput for a distributed KVS till date. We finally cover related work (Section 4.5) and

conclude the chapter (Section 3.7).

3.1 Background on FASTER
Shadowfax is built over the FASTER single-node KVS, which it relies on for hash

indexing and record storage. Here, we describe some key aspects of FASTER, since

Shadowfax’s design integrates with it and builds on its mechanisms. More details

about FASTER itself can be found elsewhere [16, 102]. Specifically, Shadowfax extends

FASTER’s asynchronous cuts, which help avoid coordination, and its HybridLog, which

transparently spans DRAM and SSD.

In most ways, FASTER works like most durable hash table libraries. It includes a

lock-free hash table divided into cacheline-sized buckets (Figure 3.2). Each 8 byte bucket

entry contains a pointer to a record whose key hashes to that bucket. Each record points

to another record, forming a linked list of records with common significant key hash

bits. Each bucket entry contains additional bits from the associated records’ key hash,

increasing hashing resolution and disambiguating what records the bucket entry points to

without extra cache misses and without full key comparisons. Each record pointed to by

the hash table is stored in the HybridLog.

FASTER clients can use it like any other library, but a common pattern is to pin one client

application thread per CPU core to eliminate scheduler overheads. Each client thread

calls read or read-modify-write operations on keys in FASTER. FASTER’s cache-conscious

design and lock-freedom are key in its ability to perform more than 100 Mops/s on a

single multicore machine.

48

3.1.1 HybridLog Allocator

FASTER allocates and stores all records in its HybridLog, which spans memory and

SSD (Figure 3.2). The HybridLog combines in-place updates (for records in memory) and

log-structured organization (for records on SSD), and provides lock-free access to records.

The portion of the HybridLog’s address space on SSD forms the stable region. It

contains cold records that have not been recently updated. The portion in memory is

composed of two regions: a (larger) mutable region and a (smaller) read-only region.

Records in the mutable region can be modified in-place with appropriate synchronization

that is chosen by the application using FASTER (for example, atomic operations, locks, or

validation). This region acts as a cache for recently updated records and avoids expensive

per-update allocations.

The read-only region mostly contains records that are being asynchronously written

to SSD. These records cannot be updated in place, since they must remain stable during

I/O. The read-only region represents records that are becoming cold, and it acts as a

second-chance cache. FASTER uses a read-copy-update to modify records in this region: the

updated record version is appended to the mutable region, and the hash table is updated

to point to it. This helps provide good cache hit rates without fine-grained metadata.

Each record entry in FASTER’s hash table points to a reverse linked list of records on the

HybridLog, allowing it to maintain a compact hash table for larger-than-memory datasets

that span storage media. Note, that a consequence of this is that hash table lookups

in FASTER may need to traverse chains of records that span from memory onto SSD.

Section 3.3.2 describes how Shadowfax extends HybridLog so that it also spans shared

cloud storage and how this accelerates the completion of scale out and data migration.

3.1.2 Asynchronous Cuts

Lock-freedom makes FASTER fast, but it creates challenges for synchronization and

memory safety. Updated versions of records may be installed in its hash table, even as

old versions of that record are still being read by other threads. This is a common problem

in all lock-free, RCU-like schemes [79]. To solve this, FASTER uses an epoch-based memory-

protection scheme [62]. All threads calling into FASTER are registered with an epoch

manager that tracks when threads begin and end access to FASTER’s internal structures.

49

When a page is evicted to SSD, the epoch-based scheme ensures that the memory is not

reused while any thread could still be accessing it. The full details of this scheme are

beyond the scope of this paper.

Critically, this epoch-based scheme also plays a key role in coordinating information

across threads lazily without inducing stalls. During complex, process-wide events (such

as page eviction and checkpointing), threads lazily coordinate by registering callback

actions that are eventually executed once each thread synchronizes some local state with

an updated process-global value. The same mechanism can also be used to trigger a

function only once all threads are guaranteed to have updated their local state from some

process-global state. In effect, this allows trigger actions that are guaranteed to take

effect only after all threads agree on and have each locally observed some transition in

process-global state. This can be used to create a process-wide asynchronous cut, where

events such as process state transitions are realized asynchronously and lazily over a set

of independent thread-local state transitions.

For instance, consider the read-offset address that demarcates read-only records from

mutable records on the HybridLog (Section 3.1.1). When this address is updated, each

thread may notice the update at different points in time, depending on when they refresh

their epoch. Eventually, when all threads have observed the update, the records between

the old and new read-offsets have become read-only, and a function is triggered to write

the pages to disk. Using the same mechanism, addresses for which threads do not yet

agree on the mutability status can be handled efficiently. Figure 3.3 shows this process in

action.

FASTER’s epoch protection works within a single shared memory process on one

machine. Section 3.2.2.1 shows how Shadowfax extends the notion of cuts to apply

globally across machines – with the assistance of client threads – to safely move ownership

of records between servers while preserving throughput.

3.2 Shadowfax Design
Shadowfax is a distributed key-value store. Each server in the system stores records

inside an instance of FASTER, and clients issue requests for these records over the network.

These requests can be of three types: reads that return a record’s value, upserts that blindly

50

update a record’s value, and read-modify-writes that first read a record’s value and then

update a particular field within it. Within a server, records are allocated on FASTER’s

HybridLog, whose stable region is extended by Shadowfax to also span a shared remote

storage tier in addition to main memory and local SSD.

Each server runs one thread per core, and it shares its FASTER instance among all

threads. Threads on remote clients directly establish a network session with one server

thread on the machine that owns the record being accessed (Section 3.2.1.1). Sessions are

the key to retaining FASTER’s throughput over the network: they allow clients to issue

asynchronous requests; they batch requests to improve server-side throughput and avoid

head-of-line blocking; and they avoid software-level intercore request dispatching.

Shadowfax uses hash partitioning to divide records among servers. The set of hash

ranges owned by a server at a given logical point of time is associated with a per-

server strictly increasing view number. A fault-tolerant, external metadata store (e.g.,

ZooKeeper [41]) durably maintains these view numbers along with mappings from hash

ranges to servers and vice versa. View numbers serve two key purposes in Shadowfax.

First, they help minimize the impact of record ownership checks at servers, helping

them retain FASTER’s performance. Second, they allow the system to make lazy and

asynchronous progress through record ownership changes (Section 3.2.2).

Sessions and low-coordination global cuts via views play a key role in Shadowfax’s

reconfiguration, data migration, and scale out. Its scale out protocol migrates hash ranges

from a source server to a target server and is designed to minimize migration’s impact to

throughput. The protocol uses a view change to transfer ownership of the hash range from

the source to the target along with a small set of recently accessed records. This allows

the target to immediately start serving requests for these records and helps maintain high

throughput during scale out. Since views are per-server, this also ensures that multiple

migrations between disjoint sets of machines can take place simultaneously. Next, threads

on the source work in parallel to collect records from FASTER and transmit them over

sessions to the target. Similarly, threads on the target work in parallel to receive these

records and insert them into its FASTER instance. This parallel approach helps migrate

records quickly, reducing the duration of scale out’s impact on throughput. Scale out

completes once all records have been moved to the target.

51

3.2.1 Partitioned Dispatch and Sessions

Shadowfax’s network request dispatching mechanism and client library need to be

capable of saturating servers inside FASTER. One option would be to maintain a FASTER

instance per server thread, partitioning records across them to avoid cache coherence costs.

However, this would create a routing problem at the server; requests picked up from the

network would need to be routed to the correct thread. This would require cross-thread

coordination, hurting throughput and scalability. Clients could be made responsible for

routing requests to the correct server thread, but this would require every client thread to

open a connection to every server thread and would not scale. To avoid this, client threads

could partition and shuffle requests between themselves to directly transmit requests to

the correct server thread, but this would require cross-thread coordination at the client

which would also not scale well.

Using a connectionless transport like UDP could make client side routing feasible

without introducing cross-thread coordination [74, 92]. However, the system would lose

its ability to perform congestion control and flow control, or tolerate packet loss, which are

basic requirements for running a networked storage system.

Shadowfax avoids cross-thread coordination by sharing a single instance of FASTER

between server threads. FASTER defers cross-core communication to hardware cache

coherence on the accessed records themselves, cleanly partitioning the rest of the system

(Figure 3.4). Each server runs a pinned thread on each vCPU inside a cloud VM. Each

server thread runs a continuous loop that does two things. First, it polls the network for

new incoming connections. Next, it polls existing connections for requests, and it unpacks

these requests, calling into FASTER to handle each of them. After requests are executed, the

returned results are transmitted back over the session they were received on. Since FASTER

is shared, neither requests nor results are ever passed across server threads.

3.2.1.1 Client Sessions

Shadowfax’s partitioned dispatch/shared data approach also extends to clients. Since

they do not need to route requests to specific server threads, they can reduce connection

state while avoiding cross-thread coordination.

However, clients must also avoid stalling due to network delay in order to saturate

52

servers. To do this, each client thread is pinned to a different vCPU of a cloud VM, and it

issues asynchronous requests against an instance of Shadowfax’s client library (Figure 3.5).

The library pipelines batches of these requests to servers.

The client library achieves this through sessions. When the library receives a request,

it first checks if it has a connection to the server that owns the corresponding record. If

it does not, it looks up a cached copy of ownership mappings (periodically refreshed

from the metadata store), establishes a connection to a thread on the server that owns

the record, and associates a new session with the connection. Next, it buffers the request

inside the session, enqueues a completion callback for the request inside the session, and

returns. This allows the client thread to continue issuing requests without blocking. Once

enough requests have been buffered inside a session, the library sends them out in a batch

to the server thread. On receiving a batch of results from the server, the library dequeues

callbacks and executes them to complete the corresponding requests.

Sessions are fully pipelined, so multiple batches of requests can be sent to a server

thread without waiting for responses. This also means that a client thread can continue

issuing asynchronous requests into session buffers while waiting for results. This

pipelined approach hides network delays and helps saturate servers. It also helps keep

request batch sizes small, which is good for latency.

3.2.1.2 Exploiting Cloud Network Acceleration

The cloud network has traditionally not been designed for high data rates and

efficiency. The high CPU cost of processing packets over this network can easily prevent

servers and clients from retaining FASTER’s throughput. However, this is beginning to

change; many cloud providers are now transparently offloading parts of their networking

stack onto SmartNIC FPGAs to reduce this cost. Shadowfax’s design interplays well

with this acceleration; batched requests avoid high per-packet overheads and its reduced

connection count avoids the performance collapse some systems experience [28].

Since threads do not communicate or synchronize, all CPU cycles recovered from

offloading the network stack can be used for executing requests at the server and issuing

them from the client. This allows Shadowfax to retain FASTER’s high throughput using

Linux’s TCP stack on cloud networks, avoiding dependence on kernel-bypass or RDMA.

53

3.2.2 Record Ownership

To support distributed operations such as scale out and crash recovery, Shadowfax

must be able to move ownership of records between servers at runtime. This creates a

problem during normal operation: a client might send out a batch of requests to a server

after referring to its cache of ownership mappings. By the time the server receives the

batch, it might have lost ownership of some of the requested records in the batch (e.g., due

to scale out). To solve this, the server must validate that it still owns the records requested

in the batch before it processes the batched requests. This can hurt normal case throughput

if each request in the batch must be cross-checked against a set of hash ranges owned by

the server.

Shadowfax solves this by associating the set of hash ranges owned by a server with

a per-server strictly-increasing view number. All request batches are tagged with a view

number, letting servers quickly assess whether the batch only includes requests for records

that it currently owns. When a server’s set of owned ranges changes, its view number is

advanced. Each server’s latest view number is durably stored along with a list of the hash

ranges it owns in the metadata store.

When a client connects to a server, it caches a copy of the server’s latest view (a view

number and its associated hash ranges) inside the session. Every batch of requests sent

on that session is tagged with this view number, and clients only put requests for keys

into batches that were owned by that server in that view number. Upon receiving a batch,

the server always checks its current view number against the view number tagged on

the batch. If they match, then the server and client agree about what hash ranges are

owned by the server, ensuring the batch is safe to process without further key or hash

range checks on each request. If they do not match, then either the client or the server

has out-of-date information about what hash ranges the server owns. In this case, the

server rejects the batch and refreshes its view from the metadata server. Upon receiving

this batch rejection, the client refreshes its view information from the metadata server and

then reissues requests from the rejected batch.

In essence, view numbers offload expensive hash range checks on each requested key

to clients, reducing load at servers. For a server that owns P hash ranges accepting R

requests in batches of size B, views reduce the cost of ownership checks from O(R log P)

54

to O(R/B). Even more crucially, since it is a single integer comparison per batch, it

ensures we never take a cache miss to perform record ownership checks, which would

be prohibitive at 100 Mops/s. Hence, views are key in supporting dynamic movement of

ownership between servers while preserving normal case throughput.

3.2.2.1 Ownership Transfer

When ownership of a hash range needs to be transferred to or away from a server, its

ownership mappings are first atomically updated at the metadata store. This increments

its view number and adds or removes the hash range from its mapping. Servers and

clients observe this view change either when they refresh their local caches of views and

ownership mappings (via an epoch action) or when they communicate with a machine

that has already observed this change.

When a server involved in the transfer observes that its view has changed, it must move

into the new view. However, this step is not straightforward; keeping with Shadowfax’s

design principle, it must be achieved without stalling server threads. Within the server, this

view change is propagated asynchronously across threads via an epoch action (Figure 3.6).

Threads each mark a point in their sequence of operations, collectively creating an async

cut among all of the operations on all of the threads at the server (Section 3.1.2). This cut

unambiguously ensures no two servers concurrently serve operations on an overlapping

hash range. This approach is free of synchronous coordination, helping maintain high

throughput.

The server might be connected to clients still using the old view; it must also propagate

the view change to clients in a similar way without stalling client threads. Sessions help

Shadowfax achieve this. When a server thread moves into a new view, view validations on

request batches received over sessions with clients still in an older view are rejected. On

receiving a rejected batch over a session, each client thread first independently updates its

thread local cache of ownership mappings and views. Next, the thread marks the point in

the sessions’ sequence of operations after which batches were rejected by the server (since

there can be multiple such batches because of pipelining, this has to be the earliest such

point). Collectively, these points help create an implicit async cut across threads within

a client. Thus, clients avoid cross-thread coordination when observing an ownership

55

change. Each client connected to the server creates its async cut independently, resulting

in a cluster wide asynchronous global cut for ownership transfer.

Once it has observed ownership transfer, each client thread must reissue requests that

were rejected by the previous owner. It does so by shuffling these requests between its

sessions to the previous and new owners of the transferred hash range. First, they are

marked invalid within the previous session’s buffer. Next, they are (re)buffered into the

correct session based on the updated ownership mappings.

3.3 Scale-out and Hash Migration
Sessions and view numbers help retain high throughput over the network, but only

upto a certain point. Beyond high single node throughput, Shadowfax must also scale-out

to multiple servers, and it must retain FASTER’s throughput on each of these servers.

In a distributed setting, partitioning becomes critical to performance; it is well

known that prepartitioning records between servers results in load imbalances, which

significantly hurts throughput [1, 25]. Therefore, in order to meet its performance goals,

Shadowfax must be capable of dynamically migrating arbitrary, fine-grained splits of its

hash space between servers (new or existing) in response to load imbalances.

For migration to be practical, it must have low impact on throughput, and it must be

fast. Partitioned sessions help achieve the latter; they allow servers to collect, transmit,

receive and insert migrated records without cross-thread coordination. Since FASTER is

shared, server threads can also easily interleave migration work with request processing.

Views help too; a server can own many fine-grained splits and still serve 100 Mops/s

during normal operation.

Achieving low impact during migration is harder. Ownership of records must be

safely moved between servers, requests must be correctly executed on these records, and

progress must be tracked. All of these could potentially introduce serial bottlenecks,

and must hence be carefully performed in an asynchronous, low-coordination way.

Shadowfax’s migration protocol uses global cuts to proceed in asynchronous phases that

transfer hash range ownership before migrating records, as described next.

56

3.3.1 Migration Protocol

Shadowfax migrates hash ranges from a source to a target server. Migration is

implemented as a state machine on the source and target. Both servers transition through

migration phases on global cuts, created in the same nonblocking, low-coordination way

described in Section 3.1.2. First, each thread enters into a phase at a point in the sequence

of requests that it is processing that it chooses (a point that makes up part of the global

cut for the transition into that phase), and then it starts performing the work of that phase.

Once all threads have entered into the phase and have completed all work relating to it,

the server transitions to the next phase.

Migration is driven by the source as we outline below (Figure 3.7):

1. Sampling: Initiated by receiving a Migrate() RPC from a client, whereupon the

source

(a) atomically remaps ownership of hash ranges from the source to the target,

increments the source’s and target’s view numbers, and registers a dependency

between the source and target (for crash recovery, Section 3.3.4) within the

metadata store;

(b) begins sampling hot records by forcing all accessed records to be copied to the

HybridLog tail.

Since the records are not yet at the target and a migration is in progress, both the

source and the target continue to temporarily operate in the old ownership view; at

this point the source is still servicing requests for records in the migrating ranges.

To ensure that sampled records only get copied once, the source only copies records

whose address is lower than the HybridLog tail address at the start of this phase.

2. Prepare: Initiated after all source threads have completed the Sampling phase. The

source sends a PrepForTransfer() RPC to the target asynchronously, transitioning

the target to its own Target-Prepare phase. The Target-Prepare phase tells the target

that ownership transfer is imminent. The target temporarily pends requests in the

migrating hash ranges (since some clients may discover the new views) and services

them after the source indicates that it has stopped servicing requests in the old view.

57

3. Transfer: Initiated after all source threads have completed the Prepare phase. The

source moves into its new view and stops servicing requests on the migrating

hash ranges. When all server threads are in the new view, it sends out a

TransferedOwnership() RPC to the target asynchronously, which also includes the

hot records sampled in the Sampling phase. This moves the target into its Target-

Receive phase, whereupon it inserts the sampled records into its FASTER instance

and then begins servicing requests for the migrating hash ranges. This also triggers

the target to service any requests pending from the Target-Prepare phase.

4. Migrate: Initiated after all source threads have completed the Transfer phase. The

source uses thread-local sessions to send records in the migrating hash ranges to

the target. Threads interleave processing normal requests with sending batches of

migrating records collected from the source’s hash table to the target. Each thread

works on independent, nonoverlapping hash table regions, avoiding contention.

5. Complete: Initiated after all source threads have completed the Migrate phase. The

source sends a CompleteMigration() RPC asynchronously, moving the target to the

Target-Complete phase. Then, the source sets a flag in the metadata store indicating

that its role in migration is complete, and it returns to normal operation.

The target is mostly passive during migration; most of its phase changes are

triggered by source RPCs (Figure 3.8). Requests for a record may arrive after a

TransferredOwnership() RPC is received by the target, but before the source has sent that

record. The target marks these requests pending, and it processes them when it receives

the corresponding record.

When the target receives the CompleteMigration() RPC, it also sets a flag at the

metadata store indicating that its role in the migration is complete, and it returns to normal

operation.

Migration has succeeded once both servers have set their respective flags at the

metadata store. A cluster management thread will have to periodically check these flags;

on finding both set, it deletes the dependency at the metadata store to complete migration.

Shadowfax maintains high throughput during scale up via low-coordination,

nonblocking epoch actions and purely asynchronous intermachine communication. The

58

source prioritizes request processing, making progress in between request batches. Its state

machine transitions are independent of the target; all migration RPCs and checkpoints are

asynchronous. The target prioritizes request processing in the same way. Early ownership

transfer, sampled records, and pending operations let the target start servicing requests on

moved ranges quickly, improving throughput recovery. Sessions let the source collect and

asynchronously transmit records in parallel while the target receives and inserts them in

parallel.

3.3.2 Leveraging Shared Storage for Decoupling

Migration cannot complete until all records have been moved to the target, so

Shadowfax must ensure that this happens quickly. However, FASTER’s larger-than-

memory index makes this challenging: entries in its hash table point to linked lists of

records, which can span onto local SSD. Performing I/O (sequential or random) to migrate

these records can slow migration and hurt throughput.

Shadowfax’s shared remote tier helps solve this problem. Records on local SSD are

always eventually flushed to this tier, so migration can avoid accessing them. When the

source encounters an address for a record in a list that is on the SSD, it sends an indirection

record to the target that indicates this record’s location in the shared tier. This indirection

record contains the next address in the list, an identifier for the source’s log, the hash range

being migrated, and the hash entry that pointed to the list. The target inserts these records

into its hash table using the hash entry contained in the record. Overall, these fine-grained

interlog dependencies represented by indirection records accelerate migration completion

by eliminating all I/O that would otherwise be needed to consolidate records and transmit

them to the target.

During normal operation, if the target encounters an indirection record when

processing a request and the request’s key falls in the hash range contained in the record,

the target asynchronously retrieves the actual record from the shared tier using the

contained address and log identifier, inserts it into its hash table, and then completes the

request.

59

3.3.3 Cleaning Up Indirection Records

Migrations can accumulate indirection records between server logs for records that are

never accessed (Figure 3.9). On scaling up (¬) by moving a hash range from Log 0 to Log 2,

Log 2 contains indirection records that point to Log 0 on the shared tier. Dependencies are

also created during scale down (­) when records on Log 1 are migrated to Log 2. These

dependencies must eventually be cleaned up.

Shadowfax must already periodically do log compaction to eliminate stale versions

of records from its shared tier; resolving and removing indirection records can be

piggybacked on this process to eliminate overheads for cleaning them (®). When

compacting its log, if a server encounters a record belonging to a hash range it no longer

owns, the server transmits the record to the current owner. On receiving such a record, the

owner first looks up the key. If it encounters an indirection record while doing so and the

key falls in the contained hash range, then it means that the key was not retrieved from the

shared tier after migration. In this case, the server inserts the received record; otherwise, it

discards the record.

Barring normal case request processing, this lazy approach ensures that records not

in main memory are accessed only once, during the sequential I/O of compaction, which

has to be done anyway. It is also deadlock-free: two servers might have indirection records

pointing to each others’ log, but the resulting dependencies are cleaned up independently.

3.3.4 Fault Tolerance

Migrations in Shadowfax can be easily made fault tolerant. During their respective

Complete phases in the protocol, the source and target would first have to take a

checkpoint before setting their flags at the metadata store. This would make the migration

durable; if either machine crashes hereafter, it can be independently recovered from a

checkpoint containing the effects of the migration.

If either server crashes during, recovery must involve both, which is why the metadata

store tracks the dependency between them. This is because of early ownership transfer;

during migration, the target services operations on the migrating ranges, but many records

belonging to it may still be on the source. When recovering a server, if Shadowfax finds

a migration dependency involving the server without both completion flags set, it cancels

60

the migration by setting a cancellation flag in the metadata server. Then, it transfers

ownership of hash ranges back to the source (incrementing the source and target’s view),

restores both machines using their premigration checkpoints, and recovers requests on

hash ranges that were issued during migration at the source.

This cancellation procedure ensures migration is deadlock-free. If either server fails

to make progress through the protocol in a timely manner, the migration can always be

cancelled by any party, and both servers can be rolled back. No server can stall migration

completion indefinitely.

3.4 Discussion
Shadowfax’s techniques are not restricted to KVSs and can be applied to other systems

as well. Its partitioned sessions can be used by stateful cloud services to preserve

throughput over the network. In fact, our implementation of sessions is templated on the

service; we used FASTER for the purpose of this system, but one could also use parameter

servers, graph stores, model serving systems etc.

Likewise, asynchronous global cuts can be used to scale-out these services while

preserving throughput. Since these cuts help propagate changes in ownership across

cores and machines, they can also be used for other operations that involve changes in

ownership like failure detection and crash recovery.

In addition to scale-out, Shadowfax’s migration protocol can also be used to scale-in

a cluster. Since this protocol is fast and has low impact, it can also be used to correctly

partition records across servers. In a distributed setting, partitioning becomes critical to

performance; it is well known that prepartitioning records between servers results in load

imbalances, which significantly hurts throughput [1, 25]. Migration allows Shadowfax

to dynamically partition its hash space into arbitrary, fine-grained splits and avoid pre-

partitioning. Using load information available at runtime, it can first determine the ideal

way to split its hash space across servers. It can then quickly migrate these splits between

them. View validation helps too; a server can own many fine-grained splits and still serve

100 Mops/s during normal operation.

61

3.5 Evaluation
To evaluate Shadowfax, we focused on six key questions:

1. Does it preserve FASTER’s performance? Section 3.5.2 shows that Shadowfax

preserves FASTER’s scalability and adds in negligible overhead. Its throughput scales

to 130 Mops/s on 64 threads on a VM even when using Linux TCP.

2. How does it compare to an alternate design? Section 3.5.2 shows that Shadowfax

performs 4x better than a state-of-the-art approach that partitions dispatch as well as

data.

3. Does it provide low latency? Section 3.5.3 shows that while serving a throughput of

130 Mops/s, Shadowfax’s median latency is 1.3 ms on Linux TCP. Using two-sided

RDMA decreases this to 40 µs.

4. Can it maintain high throughput during scale out? In Section 3.5.5, we see that

when migrating 10% of a server’s hash range, Shadowfax’s scale-out protocol can

maintain throughput above 80 Mops/s. Parallel data migration can help complete

scale out in under 17 s, and sampled records help recover throughput 30% faster

(Section 3.5.5.3).

5. Do indirection records help scale out? Section 3.5.5.2 shows that by restricting

migration to main memory, indirection records help speed scale out by 6x. They

also have a negligible impact on server throughput once scale out completes.

6. Do views reduce scale out’s impact on normal operation? In Section 3.5.5.4, we

show that validating ownership using views has a negligible impact on normal case

server throughput. When compared to hash validating each request within a batch,

views improve throughput by as much as 17% depending on the number of hash

ranges owned by the server.

7. Can it scale across scales? Section 3.5.6 shows that when scaled across machines,

Shadowfax continues to retain FASTER’s high throughput. A cluster consisting of 768

threads spread across 12 servers scales linearly to 930 Mops/s while servicing 2304

client sessions.

62

3.5.1 Experimental Setup

We evaluated Shadowfax on the Azure public cloud [19]. We ran all experiments on

the E64 v3 series of virtual machines [86] (Table 3.1). Experiments use 64 cores unless

otherwise noted. Each VM uses accelerated networking, which offloads much of the

networking stack onto FPGAs [83], allowing us to evaluate Shadowfax over regular Linux

TCP. Shadowfax’s remote tier uses Azure’s paged blobs on premium storage [84], which

offer 7,500 random IOPS with a write throughput of 250 MB/s per blob.

We used a dataset of 250 million records, each consisting of an 8 byte key and 256 byte

value (totalling 80 GB in Shadowfax). To evaluate the system under heavy ingest, we

used YCSB’s F workload [18] consisting of read-modify-write requests. Each request

reads a record, increments a counter within the record, and writes back the result. This

counter could represent heartbeats for a sensor device, click counts for an advertisement or

views/likes on a social media profile. Unless noted, requested keys follow YCSB’s default

Zipfian distribution (θ = 0.99).

We compare to two baselines; one representing the state-of-the-art in fast request

processing, the other representing the state-of-the-art in data migration.

1. Seastar+Memcached [111] is an open-source framework for building high

performance multicore services. Its shared-nothing design constrasts with

Shadowfax; servers partition data across cores, eliminating the need for locking.

Clients can send requests to any server thread; Seastar uses message passing via

shared memory queues to route each request to the core that processes requests

for that data item. Seastar represents a best case for the state-of-practice; it is

highly optimized. It uses lightweight, asynchronous futures to avoid context switch

overheads, and it uses advanced NIC features like FlowDirector [43] to partition and

scale network processing. We used an open-source, lock-free, shared-nothing version

of Memcache on Seastar as a baseline [110]. We batched 100 operations per request,

which maximized its throughput.

2. Rocksteady [60] is a state-of-the-art migration protocol for RAMCloud [96]. To

accelerate migration, it immediately routes requests for migrated records to the

target, while it is transfering records (which only reside in memory). It slowly

63

performs disk I/O in the background to incorporate the migrated records into

durable, on-disk replicas that belong to the target; this must complete before the

source and target can be independently recovered. We modified Shadowfax to

use a similar approach as a baseline. Instead of using indirection records, first, all

in-memory records are moved; then, the source performs a sequential scan over all

records on durable storage, where all encountered live are sent to the target.

3.5.2 Throughput Scalability

Shadowfax partitions request dispatching across threads for performance. It shares

access to FASTER between threads to provide high throughput even under skew. To

demonstrate this, we measured throughput while scaling the number of threads on one

server machine with one client machine. The entire dataset resides in memory, ensuring

the experiment is CPU-limited. Figure 3.10 shows the results on Shadowfax, on FASTER

when requests are generated on the same machine (i.e., no networking involved), and on

Shadowfax without hardware accelerated networking.

Shadowfax retains FASTER’s scalability. FASTER scales to service 128 Mops/s on

64 threads. Adding in the dispatch layer and remote client preserves performance;

Shadowfax scales to 130 Mops/s on 64 threads. This is because it avoids cross thread

synchronization or communication for request processing from the point a client thread

issues a request until the server thread executes it on FASTER. Client threads’ pipelined

batches of asynchronous requests also avoid any slowdown from stalls induced by

network delay, keeping all threads at the client and server busy at all times.

Hardware network acceleration also plays an important role in maintaining

performance; when disabled, throughput reaches only 58% (75 Mops/s) of accelerated

TCP. Here, CPU overhead for TCP transport processing increases, so the server slows due

to additional time spent in recv() syscalls instead of doing work. Hardware acceleration

offloads a significant portion of packet processing to a SmartNIC, allowing Shadowfax

to maintain FASTER’s scalability without relying on kernel-bypass networking (DPDK or

RDMA).

Next, we compared Shadowfax to Seastar (Figure 3.11) using a uniform key access

distribution; this is the only distribution that Seastar’s client harness supports (this

64

advantages Seastar’s shared-nothing approach, which suffers imbalance under skew).

Seastar scales to 10 Mops/s on 28 threads, after which throughput is flat. Shadowfax

scales linearly to 85 Mops/s on 64 threads; even at 28 threads, it is already 4x faster than

Seastar. This is because Seastar partitions work at the wrong layer; threads maintain

independent indices to avoid synchronizing on records, but this forces threads to use

intercore message passing when they receive a request to route it to the thread that has

that record. To ensure that this is the case and that it is not the result of a bottleneck in

Seastar’s shared-nothing memcached implementation, we also measured the throughput

of Seastar’s when each request is a no-op (by disabling its index, see Seastar-NOP). This

improves Seastar’s throughput, but it is still 4× slower than Shadowfax on 64 threads. This

reinforces that simply attaching more scalable index like FASTER to Seastar’s networking

and dispatch layers is not sufficient to get good performance; forced cross-core routing of

requests is the bottleneck.

In contrast, Shadowfax’s design helps it exploit its shared FASTER instance, which is

lock-free and minimizes cache footprint. It leaves all synchronization and communication

to the hardware cache coherence, which is more efficient than explicit software

coordination and only incurs high costs when real contention arises in data access patterns,

rather than pessimistically synchronizing on all requests. Shadowfax’s advantage grows

with skew; Figure 3.10 shows its performance improves by 1.5x under skew, whereas

Seastar’s performance would decrease.

In addition to Azure TCP, we also measured Shadowfax’s scalability on Azure Infrc and

on CloudLab [106]. Figure 3.12 demonstrates that Shadowfax’s throughput scales linearly

on these platforms too.

3.5.2.1 Insert Only Workload

FASTER’s HybridLog is key to Shadowfax’s high throughput since it allows records

to be updated in-place. However, in-place updates might not always be possible. For

workloads that are insert only, throughput will be limited by the rate at which records can

be appended to the HybridLog’s tail. Figure 3.13 presents scalability for such a workload.

Throughput scales to 8 Mops/s on 16 threads. Beyond 16 threads, increments to the

HybridLog’s tail bottleneck the system, and throughput saturates.

65

3.5.3 Batching and Latency

Shadowfax clients send requests in pipelined batches to amortize network overheads

and keep servers busy. Asynchronous requests with hardware network acceleration help

reduce batch sizes and latency. To show this, we measured its median latency and batch

size at server saturation. Table 3.2 presents results on TCP, TCP with hardware acceleration

disabled, and with two-sided RDMA (Infrc). We used Azure’s HC44rs [85] instances for

Infrc, since they support (100 Gbps) RDMA; they have Xeon Platinum 8168 processors with

44 vCPUs.

Most of Shadowfax’s latency comes from batching, which amortizes network CPU

costs. Accelerated networking reduces CPU load, decreasing the batching needed to retain

throughput. Accelerated networking keeps the batch size required to saturate throughput

small at 32 KB, which also keeps median latency low at 1.3 ms. Without acceleration,

increased batch size does not help; with 32 KB batches throughput drops to 75 Mops/s,

and median latency increases to 2.2 ms.

Predictably, the batch size required to saturate throughput on Infrc is significantly

lower at 1 KB, dropping median latency to 40 µs. This is because the network is faster

and the stack is implemented in hardware; servers and clients can receive and transmit

batches with near-zero software overhead (including system calls). Secondly, vCPUs on

these instances are faster; they have a base clock rate of 2.7 GHz compared to 2.3 GHz on

the TCP instances (Table 3.1). This speeds servers and clients, reducing the batch size and

threads (from 64 to 44) required to reach the same throughput.

To evaluate this further, we ran Shadowfax using TCP over IPoIB [80] on the Infrc

instances (Table 3.2, TCP-IPoIB). Throughput still saturates at 125 Mops/s. Compared

to hardware accelerated TCP, faster vCPUs reduce the batch size by 4x (8 KB) and

median latency by 5x (260 µs). Differences in the network might also contribute to these

improvements, but we found Shadowfax to be CPU-bound in both cases.

3.5.4 Memory Budget

FASTER’s throughput eventually becomes limited by the SSD when the entire dataset

does not fit in main memory. Shadowfax’s dispatch layer and client library ensure that

this does not change when requests are generated over the cloud network. To show this,

66

we measured throughput under a decreasing main-memory budget for the HybridLog.

We also measured the hit rate (the percentage of requests that were served from main-

memory) during this experiment. Figure 3.14 presents the results (in log scale).

Overall, throughput drops as the memory budget decreases. This is because the system

needs to issue random IO to fetch records from SSD. Once fetched, these records are

appended to the HybridLog’s tail, which flushes records at its head to SSD leading to more

random IO during future requests. For a uniform distribution, throughput begins to drop

at 80 GB. Since all records are equally hot, even a small set on SSD hurts the hit rate and

saturates SSD IOPS (Table 3.1). For a zipfian distribution, a smaller hot set ensures that this

begins to happen only at 50 GB. Throughput still drops because of low SSD IOPS (Azure

throttled our VMs to 96,000 IOPS), decreasing to 3.5 Mops/s at 20 GB. However, this is still

24× better than the uniform case, which drops to 0.146 Mops/s.

3.5.5 Scale Out

Shadowfax’s migration transfers hash ranges between two machines and minimizes

throughput impact while doing so. Indirection records help restrict migration to memory,

speeding up scale out, decoupling the source and target sooner. To demonstrate this, we

measured throughput during scale up.

In a 5-minute experiment with one client and two servers (a source and a target), the

entire hash space initially resides at the source. After 1 minute, 10% of this hash range

is moved to the target. Figure 3.15 shows system throughput during the experiment;

Figure 3.16 shows source and target throughput separately. In (a), all records are placed

in memory. In (b) and (c), servers are restricted to a memory budget of 60 GB, allowing

us to compare the impact of indirection records (in (b)) against Rocksteady’s scan-the-log

approach (in (c)).

3.5.5.1 All-In-Memory Scale Out

Global cuts for ownership transfer avoid stalling cores at migration start, but the view

change for this cut has some impact; request batches are invalidated, causing requests to

be shuffled among sessions buffers at the client (we calculated the number of such requests

to be approximately 250,000). This is visible in Figure 3.15 (a); throughput at the start of

scale out (1 minute) briefly drops to 80 Mops/s.

67

Figure 3.16 (a) shows that throughput on the source stays at 85 Mops/s after this. This

is because the source is collecting and transmitting records as it services requests. Parallel

migration limits the length of this impact in two ways. First, it accelerates migration,

completing in 17 s and restoring full throughput. Second, as more records shift to the

target, it serves more requests, causing system throughput to recover even before scale up

completes. Once scale up completes, system throughput increases by 10% as expected.

Shadowfax’s asynchronous client library helps limit the impact too. When the target

receives a request for a record that has not been migrated yet, it marks the request as

pending. This keeps clients from blocking, allowing them to continue sending requests.

To prevent a buildup of pending requests, the target periodically tries to complete them.

Figure 3.17 (a) shows the number of pending operations at the target during migration.

When migration starts, requests flood the target, pending 100 million requests. As

records migrate, these requests complete, with the last pending operation completing

100 s after migration start. Hence, practical migrations must be small and incremental

to bound delay; however, throughput recovery is more important in Shadowfax’s target

applications, whereas latency can be tolerated with asynchrony.

We also ran the above experiment on a larger cluster of four 64 core machines

on CloudLab [106] and obtained similar results; aggregate cluster throughput in that

experiment was only impacted by 20% in the worst case during migration, since

throughput is only reduced at the source during migration.

3.5.5.2 Indirection Records

With a 60 GB memory budget, some records to be migrated are on the source’s SSD.

Rocksteady’s approach (Figure 3.15 (c)) migrates records from memory and then scans the

on-SSD log to migrate colder records. Parallel migration completes the in-memory phase

in just 14 s. Thoughput improves quickly after this phase, since these are hotter records.

However, the second phase is single threaded, scans over files on SSD, and takes 165 s to

complete. Hence, scale out takes 180 s, and the source and target remain interdependent

for fault tolerance.

Indirection records solve this, completing migration in 32 s (Figure 3.15 (b)) and

decoupling the source and target 6x faster. By sending out records that point to shared

68

remote storage, migration is restricted to memory and avoids I/O at the source altogether.

However, this approach increases the amount of data transmitted to the target. Figure 3.18

show this effect. Compared to Rocksteady’s 5.60 GB, indirection records cause 16.47 GB

to be transmitted from memory to the target. This is because we must send about one

indirection record per hash table bucket entry, totaling 11 GB here. The larger migration

takes 18 s longer than Rocksteady’s in-memory phase, but it decreases the total duration

of migration by 150 s.

After migration, requests that hit indirection records at the target cause remote accesses

to shared cloud storage. These requests are infrequent (these records are cold), and they

have little impact on throughput (Figure 3.15 (b)). However, cloud storage is slow, so in

the time it takes to retrieve one such record, the target receives many requests for it which

must pend. Requests that pend during scale out complete by 4 minutes (Figure 3.17 (b)).

The gradual upward slope after this is due to the requests that pend on access to remote

shared storage. Requests never pend after scale out with Rocksteady; however, its slow

sequential scan causes requests to pend awaiting transmission from the source during its

longer migration.

We also measured the impact of fetching records from shared remote storage when

resolving indirection records during compaction, but its throughput impact was neglible

(Figure 3.19).

3.5.5.3 Sampled Records

Shadowfax sends a small set of hot records to the target during ownership transfer,

which allows the target to start servicing requests and recovering throughput quickly.

Figure 3.20 shows target throughput when this is enabled (Sampling) and when it is

disabled (No Sampling). In this experiment, all data start in the source’s memory, so

scale out completes in 17 s. When enabled, throughput at the target rises up to 8 Mops/s

immediately after ownership transfer. If disabled, this happens 5 s later, once sufficient

records have been migrated over. At this point, nearly 30% of scale out has completed,

meaning that by sampling and shipping hot records during ownership transfer, the target

starts contributing to system throughput 30% faster. Measurements on the source show

that the SAMPLING phase lasted 4 ms and had no noticeable overhead.

69

3.5.5.4 Ownership Validation

Views allow Shadowfax to fluidly move ownership of hash ranges between servers and

help minimize the overhead of scale out on normal operation of the system. Figure 3.21

demonstrates this; it presents normal case server throughput under an increasing number

of hash splits. When using views to validate record ownership at the server (View

Validation), throughput stays fairly constant. On switching over to an approach that

hashes every received key and looks up a trie of owned hash ranges at the server (Hash

Validation), throughput gradually drops as the number of hash splits increase.

This figure shows the benefit of using views given a particular scale out granularity;

if scale out always moves 7% of a server’s load (16 hash splits), then view validation can

improve normal case throughput by 5%. Similarly, if it always moves 0.2% of a server’s

load (512 hash splits), then this improvement increases to 10%.

3.5.6 System Scalability

In addition to retaining FASTER’s throughput within a machine, Shadowfax also retains

throughput across machines. To demonstrate this, we first hash partitioned 2 billion

records across a cluster consisting of 12 servers on CloudLab [106] (each server had 64

threads, 128 GB RAM and one 100 Gbps Mellanox CX5 NIC). Next, we measured the total

throughput of this cluster while varying the number of clients issuing requests (clients had

the same hardware as servers). Because each client thread opens up a session to one thread

on each server, each client added in 64 sessions to each server and hence 768 sessions to

the cluster (64 threads/client * 12 servers).

Figure 3.22 shows the results. ”Unbalanced” represents results for a zipfian distribution

under which cluster throughput scales to 890 Mops/s. However, this throughput does

not scale linearly when moving from two clients to three. Workload skew is the primary

reason for this small drop in performance; our dataset was split into 12 coarse grained

hash ranges, each of which was assigned to one server. This is insufficient to uniformly

distribute load across servers, and hence limits throughput scalability. Shadowfax’s

migration protocol is precisely designed to fix these imbalances via its fine-grained hash

splits. Load distributions can be monitored at runtime [1] to determine the ideal hash-

splits. Once these splits are known, they can be quickly migrated with low impact to

70

throughput. ”Uniformly Balanced” (Figure 3.22) presents the upper bound improvement

that could be achieved by doing so. It represents a uniform distribution where load

is uniformly distributed across all servers. Cluster throughput improves by 40 Mops/s

(4.5%) to 930 Mops/s.

Finally, beyond high throughput, this experiment also demonstrates that Shadowfax

can scale to support a large number of client sessions (connections); at saturation, each

server has 192 sessions open to it, resulting in a total of 2304 sessions across the cluster.

3.6 Related Work
Shadowfax builds on several areas of recent research.

3.6.1 Epochs and Cuts

There are many schemes for synchronization and memory protection in lock-free

concurrent data structures including hazard pointers [82], read-copy-update [79] and

epoch-based schemes [33, 62]. Like Shadowfax, several other systems [66–69] use epochs

for this purpose.

Shadowfax’s use of epochs resembles Silo’s, a (single-node) in-memory store [125].

Like in Silo, Shadowfax’s epochs avoid strong ordering among requests except on coarse

boundaries, improving scalability. Silo also uses epochs to improve write-ahead logging

scalability [133]. Shadowfax extends these epochs back to clients by asynchronously

choosing points in server execution and correlating these back to per-client sequence

numbers, effectively pushing the overhead of logging out of servers altogether. Similarly,

Scalog’s persistence-before-ordering approach uses global cuts that define and order

shards of operations on different machines [26]; Shadowfax uses similar cuts across threads

and client session buffers to define an order to enforce boundaries among operations.

3.6.2 High-throughput Networked Stores

Some in-memory stores exploit kernel-bypass networking or RDMA and optimize for

multicore. Many of these focus on throughput but do not provide scale out [49, 74, 88], both

of which can slow normal-case request processing. RAMCloud focuses on low-latency and

has migration, but its throughput is two orders of magnitude less than Shadowfax [94, 96].

FaRM [28, 29] creates large clusters of distributed memory where clients primarily

71

use one-sided RDMA reads to construct data structures like hash tables. FaRM

supports scale out and crash recovery by relying on whole-machine battery backup

and in-memory replication. FaRM’s reported per-core throughput is about 300,000

reads/s/core, compared to Shadowfax’s 1.5 million read-modify-writes/s/core, though

there are differences in experimental set up. For example, FaRM does not report numbers

for read-modify-write or write-only workloads which are significantly more expensive

in FaRM, since they involve server CPU, require replication, and cannot be done with

one-sided RDMA operations.

3.6.3 Elasticity

Scale out and migration are key features in shared, replicated stores [25, 105, 122].

High-throughput, multicore stores complicate this because normal-case request processing

is highly optimized and migration competes for CPU. Some stores rely on in-memory

replicas for fast load redistribution [29, 128]; this is expensive due to DRAM’s high cost

and replication overhead.

Squall [30] migrates data in the H-Store [53] database; it exploits skew via on-

demand record pulls from source to target with colder data moved in the background.

Rocksteady [60] uses this idea in RAMCloud along with a deferred replication scheme

that avoids write-ahead logging for migrated data.

3.7 Conclusion
Practical KVSs must ingest events over the network and elastically scale across

machines. Shadowfax does this with state-of-the-art performance that reaches

130 Mops/s/VM by relying on its global cuts, partitioned sessions, and end-to-end

asynchronous clients.

72

Table 3.1: Virtual machine details used to evaluate Shadowfax. This is the E64 v3 series
available on Azure. Instances were configured to use hardware accelerated networking.

CPU Xeon E5-2673 v4 2.3 GHz, 64 vCPUs in total

RAM 432 GB

SSD 96,000 IOPS, 500 MB/s sequential writes

Network 30 Gbps, Hardware accelerated

OS Ubuntu 18.04, Linux 5.0.0-1036-azure

Table 3.2: Shadowfax’s latency at server saturation. On Azure’s RDMA instances, it can
maintain a median of 40 µs while performing 126 Mops/s. With TCP, this increases to
1.3 ms.

Network
Saturation

Throughput
(Mops/s)

Batch Size (KB)
Median Latency

(µs)
Queue
Depth

TCP 130 32 1300 1927

TCP, 1 KB 19 1 212 60

w/o Accel 75 32 2200 1927

Infrc 126 1 38.6 60

TCP-IPoIB 125 8 260 482

73

State Management
Sensors,

Devices, IoT...

Ad hoc
Batch Analysis

Cloud
Services Ad hoc

Batch Analysis
Ad hoc

Analysis

Query

Events,
Data

Batch AnalysisStreaming

Ingest

Figure 3.1: A typical data processing pipeline. Services receive and process raw events.
A state management system ingests processed events and serves offline queries against
them.

74

SSD (Stable) Read
Only Mutable

Hash Table

HybridLog

Reverse Linked ListB
uc

ke
ts

Bucket Entries

Figure 3.2: FASTER’s HybridLog allocator spans memory and local SSD. The portion in
memory contains a mutable region that acts as a cache and a read-only region. FASTER’s
hash table points to a reverse linked list of records on the HybridLog.

Shared Memory FASTER Key-Value Store

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Op

Threads

Old view

New view

Async

Cut

Figure 3.3: View changes of shared state in FASTER take place over an asynchronous cut
using epochs. Process-global state is updated first; when every thread has observed the
update, a postchange function is triggered.

75

Cloud VM
FASTER

Key-Value Store

Smart
NIC

Unpacked
Request

Request
Batches

vCPU

Dispatcher

Sessions

Cloud
Network

Figure 3.4: Each server thread receives batches of requests from sessions and processes
them via a shared, per-machine FASTER instance. Results are returned over the network by
the same thread, avoiding cross-thread coordination.

Cloud VM

Application

Smart
NIC

Request

Request
Batches

vCPU

Library

Sessions

Cloud
Network

Figure 3.5: Client threads partition requests into per-session transmit buffers along with a
callback. Batches of asynchronous requests are kept pipelined to the server, keeping both
the client and the server busy.

76

Server
vCPU

Sessions

Client

Global Cut

Global Cut
Pushed To Clients

Client

Figure 3.6: Ownership transfer. A view change is asynchronously propagated within a
server, defining a cut across server threads. Then, the server extends this into a global cut
covering all its connected client sessions. This defines a global view boundary among all
operations while avoiding cross-core coordination both at servers and clients.

NORMAL

SAMPLING

PREPARE

TRANSFER

MIGRATE

COMPLETE

Migrate()

Figure 3.7: Migration state machine on the source. This state machine is responsible for
moving the source into the new view, for sampling and shipping hot records to the target,
and for migrating all records in the hash range to the target.

77

NORMAL

PREPARE

RECEIVE

COMPLETE

PrepForTransfer()
or

Observe New View

TransferedOwnership()
or

Records From Source

CompleteMigration()

Figure 3.8: Migration state machine on the target. It is responsible for moving the target
into the new view, safely executing requests on the migrating hash range, and receiving
records from the source

Shared Tier SSD RAM

Shared Tier SSD RAM

Shared Tier

Log 0

Log 2

Log 1

Scale Up

Scale Down

Lazy Compaction

Indirection
Records

Indirection
Records

1

2

3
Figure 3.9: Indirection records create fine-grained data dependencies between logs. These
dependencies are cleaned up lazily during log compaction.

78

●
●

●
●

● ●
●

●

● ● ● ●
●

●
●

●
●

0

25

50

75

100

125

1 8 16 24 32 40 48 56 64
Number of Threads

T
hr

ou
gh

pu
t (

M
il

li
on

 O
ps

/s
)

● Faster Shadowfax w/o Accel

Figure 3.10: Shadowfax’s thread scalability. With TCP acceleration enabled, throughput
scales linearly to 130 Mops/s and tracks FASTER (with no networking). With acceleration
disabled, throughput scales to only 75 Mops/s.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0

25

50

75

100

125

1 8 16 24 32 40 48 56 64
Number of Threads

T
hr

ou
gh

pu
t (

M
il

li
on

 O
ps

/s
)

● Seastar Seastar−NOP Shadowfax

Figure 3.11: With TCP acceleration, throughput scales linearly to 87 Mops/s under a
uniform distribution. In comparison, Seastar scales to 10 Mops/sec.

79

●
●

●
●

●
●

●
● ●

0

25

50

75

100

125

1 8 16 24 32 40 48 56 64
Number of Threads

T
hr

ou
gh

pu
t (

M
il

li
on

 O
ps

/s
)

● Infrc−Cloudlab Infrc−Azure Tcp−Cloudlab

Figure 3.12: Shadowfax’s thread scalability on different cloud platforms and networking
stacks. Throughput continues to scale linearly.

●

●

●

●
● ● ● ●

● ● ● ●
●

● ●
●

●

0

2

4

6

8

10

1 8 16 24 32 40 48 56 64
Number of Threads

T
hr

ou
gh

pu
t (

M
il

li
on

 O
ps

/s
)

Figure 3.13: For an insert-only workload, Shadowfax’s throughput is limited by the rate at
which FASTER’s log tail can be incremented. Throughput scales to 8 Mops/s on 16 threads
and then saturates.

80

●

●

●

●

● ●

●●

●

●
0.1

1

10

100

T
hr

ou
gh

pu
t

(M
il

li
on

 O
ps

/s
)

● Uniform Distribution Zipfian Distribution

●

●

●

●

● ●

●
●

●

●

100.0
99.9

99.0

90.0

10.0
100 90 80 70 60 50 40 30 20 10

Memory Budget (GB)

H
it

 R
at

e
(%

)

Figure 3.14: Shadowfax throughput under decreasing memory budgets. Under a Zipfian
access pattern, it can sustain high throughput under small budgets because of a small
working set that fits in memory.

81

(a) All Data In Memory (b) Indirection Records (c) Rocksteady

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
0

20
40
60
80

100
120

0
20
40
60
80

100
120

0
20
40
60
80

100
120

Time since start of experiment (minutes)

S
ys

te
m

 T
hr

ou
gh

pu
t

(M
il

li
on

 o
ps

/s
ec

)

Figure 3.15: Running throughput when 10% of a server’s load is migrated to an idle target.
Migration was initiated at 1 minute. For a memory budget of 60 GB (graph (b)), scale-out
shifts load in 32 s while maintaining throughput above 80 Mops/sec.

(a) All Data In Memory (b) Indirection Records (c) Rocksteady

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
0

20
40
60
80

100
120

0
20
40
60
80

100
120

0
20
40
60
80

100
120

Time since start of experiment (minutes)

S
er

ve
r

T
hr

ou
gh

pu
t

(M
il

li
on

 o
ps

/s
ec

)

Figure 3.16: Source and target throughput during scale up. Sequentially scanning over the
cold tier during migration (graph (c)), increases the duration of scale out to 180 s during
which the source loses one thread’s worth of throughput (1.5 Mops/sec).

(a) All Data In Memory (b) Indirection Records (c) Rocksteady

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
0.1

1

10

100

0.1

1

10

100

0.1

1

10

100

Time since start of experiment (minutes)

P
en

di
ng

 s
et

 s
iz

e
(M

il
li

on
)

Figure 3.17: Number of pending operations during scale up. Indirection records (graph
(b)) result in remote accesses to shared storage, which leads to larger pending queues once
scale up has completed. Without them (graphs (a), (c)), these queues drain shortly after
scale up completes.

82

0

5

10

15

20

All Data
In Memory

Indirection
Records

Rocksteady

D
at

a
M

ig
ra

te
d

F
ro

m
 M

ai
n

M
em

or
y

(G
B

)

Figure 3.18: Impact of indirection records on migration size. Indirection records lead to
larger migrations because records that are not in main memory cannot be filtered out.

Compaction Starts Compaction Ends

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10
Time since start of experiment (minutes)

S
ys

te
m

 T
hr

ou
gh

pu
t

(M
il

li
on

 o
ps

/s
ec

)

Figure 3.19: Running throughput when compacting the source’s log and cleaning up
indirection records while doing so. Indirection records do not add any additional overhead
over that of compaction.

83

0

5

10

15

20

0.5 1 1.5

Time since start of the experiment (minutes)

Ta
rg

et
 T

hr
ou

gh
pu

t
(M

il
li

on
 o

ps
/s

ec
)

Sampling No Sampling

Figure 3.20: Impact of shipping sampled records during ownership transfer to the target.
Sending them over improves the target’s throughput during the first 5 s of migration.

● ● ● ● ● ● ● ● ● ● ● ●

0
20
40
60
80

100
120

1 2 4 8 16 32 64 256 2048

Number of Hash Splits on Server

T
hr

ou
gh

pu
t

(M
il

li
on

 O
ps

/s
)

● View Validation Hash Validation

Figure 3.21: The overhead of using views to validate record ownership at a server is
negligible. When coupled with fast migration, this allows Shadowfax to shard and
redistribute load whenever required.

84

●

●

●

1 Client
768 Sessions

2 Clients
1536 Sessions

3 Clients
2304 Sessions

0
200
400
600
800

1000
1200

64 128 192
Number of Client Threads

T
hr

ou
gh

pu
t (

M
il

li
on

 o
ps

/s
)

● Uniformly Balanced Unbalanced

Figure 3.22: Shadowfax continues to retain FASTER’s high throughput even across servers.
A cluster consisting of 12 servers scales linearly to 930 Mops/s.

CHAPTER 4

EXTENSIBILITY AND MULTITENANCY

Today’s model of separated compute and storage is reaching its limits. Fast, kernel-

bypass networking has yielded key-value stores that perform millions of requests per

second per machine with microseconds of latency [28, 51, 74, 96, 129]. These systems gain

much of their speed by being simple, allowing only lookups and updates. However, this

simplicity results in inefficient data movement between storage and compute and costly

client-side stalls [7, 89]. To efficiently exploit these new stores, applications will be under

increasing pressure to push compute to them, but the granularity at which they can do so

is a concern. At microsecond timescales, even small costs for isolation, containerization, or

request dispatching dominate, placing practical limits on the granularity of functions that

applications can offload to storage.

We resolve this tension in Splinter, a multitenant in-memory key-value store with a

new approach to pushing compute to storage servers. Splinter preserves the low remote

access latency (9 µs) and high throughput (3.5 Mops/s) of in-memory storage while adding

native-code runtime extensions and the dense multitenancy (thousands of tenants) needed

in modern data centers. Tenants send arbitrary type- and memory-safe extension code

to stores at runtime, adding new operations, data types, or storage personalities. These

extensions are exposed so tenants can remotely invoke them to perform operations on

their data. Splinter’s lightweight isolation lets thousands of untrusted tenants safely share

storage and compute, giving them access to as much or as little storage as they need.

Splinter’s design springs from the intersection of three trends: in-memory storage with

low-latency networking, which is driving down the practical limits of request granularity;

multitenancy driven by the cloud and the efficiency gains of consolidation; and serverless

computing, which is training developers to write stateless, decomposed application logic

that can run anywhere in order to gain agility, scalability, and ease of provisioning.

86

Together, these trends drive Splinter’s key design goals:

1. No-cost Isolation: Since extensions come from untrusted tenants, they must be

isolated from one another. Hardware-based isolation is too expensive at microsecond

time scales; even a simple page table switch would significantly impact response

time and throughput.

2. Zero-copy Storage Interface: Extensions interact with stored data through a well-

defined interface that serves as a trust boundary. For fine-grained requests, it must

be lightweight in terms of transfer of control and in terms of data movement. This

effectively requires extensions to be able to directly operate on tenant data in situ in

the store, while maintaining protection and preventing data races with each other

and the storage engine.

3. Lightweight Scheduling for Heterogeneous Tasks: Extensions are likely to be

heterogeneous. Some extensions might involve simple point lookups of data or

constructing small indexes; others might involve expensive computation or more

data. Preemptive scheduling involves costly context switches, so Splinter must

avoid preemption in the normal case, yet maintain it as an option to contain poorly-

behaving extensions. It must also be able to support high quality of service under

heavy skew, both in terms of the tenants issuing requests at different rates and

extensions that take different amounts of time to complete.

4. Adaptive Multicore Request Routing: With multiple tenants sharing a single

machine, synchronization over tenant state can become a bottleneck. To minimize

contention, tenants maintain locality by routing requests to preferred cores on

Splinter servers. We cannot, however, use a hard partitioning, as we do not want

high skew to create hotspots and underused cores [103]. Routing decisions cannot

get in the way of fast dispatch of requests [8].

These goals give rise to Splinter’s design. Developers write type-safe, memory-

safe extensions in Rust [108] that they push to Splinter servers. Exploiting type-

safety for lightweight isolation is not new; SPIN [9] allowed applications to safely and

dynamically load extensions into its kernel by relying on language-enforced isolation.

87

Similarly, NetBricks [98] applied Rust’s safety properties to dataplane packet processing

to provide memory safety between sets of compile-time-known domains comprising

network function chains. Splinter combines these approaches and applies them in a

new and challenging domain. Language-enforced isolation with native performance and

without garbage collection overheads is well-suited to low-latency data-intensive services

like in-memory stores — particularly, when functionality must be added and removed at

runtime by large numbers of fine-grained protection domains.

Splinter’s approach allows it to scale to support thousands of tenants per machine,

while processing more than 3.5 million tenant-provided extension invocations per second

with a median response time of less than 9 µs. We describe our prototype of the Splinter

key-value store and its extension and isolation model. We evaluate it on commodity

hardware and show that a simple 800 line extension imbues Splinter with the functionality

of Facebook’s TAO [11]. On a single store, the extension can perform 3.2 million social

graph operations per second with 30 µs average response times, making it competitive

with the fastest known implementation [28].

4.1 Motivation
Splinter’s key motivation is the desire to support complex data models and operations

over large structures in a fast kernel-bypass stores. Existing in-memory stores trade data

model for performance by providing a simple key-value interface that only supports get

and put. Many real applications organize their data as trees, graphs, matrices, or vectors.

Performing operations like aggregation or tree traversal with a key-value interface often

requires multiple gets. Applications are usually disaggregated into a storage and compute

tier, so these extra gets move data over the network and induce stalls for each request.

Figure 4.1 illustrates this problem with a storage client that traverses data logically

organized as a tree. The client must first issue a get to retrieve the tree’s root node. Next,

it must perform a comparison and move down the tree by issuing another get. It must

repeat this for every step of the traversal. Each get incurs a round trip that fetches a single

node from storage; since the control flow is dependent on the data fetched, the client can

only issue one request at a time. The number of round trips needed is proportional to the

tree’s depth, and a significant portion of the tree gets moved over the network. Even with

88

modern low-latency networking, latency still dominates the client’s performance: network

transmission and processing takes tens of microseconds while the actual comparisons take

less than a microsecond [96].

One solution is to customize the storage tier of each application to support specialized

data types. However, to improve efficiency and utilization, storage tiers are usually

deployed as multitenant services [17, 25], so they cannot be customized for every possible

data structure. SQL (Structured Query Language) could be used at the storage tier, but

SQL is known to be a poor fit for data types like graphs and matrices, does not support

abstract data types, and is too expensive at microsecond timescales. Instead, Splinter

takes a different approach; it allows applications to push small pieces of native compute

(extensions) to stores at runtime. These extensions can implement richer data types and

operators, avoiding extra round trips and reducing data movement.

4.1.1 The Need for Lightweight Isolation

Multitenancy at the storage layer makes running extensions challenging; a tenant

cannot be allowed to access memory it does not own, starve others for resources, or crash

the system. The major challenge is that, at microsecond timescales, context switches and

data copying across isolation boundaries significantly hurt performance.

To quantify the overhead of hardware isolation, we simulated an 8-core multitenant

store that isolates extensions using processes while varying the numbers of tenants making

requests to it. Simulated requests consume 1.5 µs of compute at the store; this is based on

our benchmarks of simple unisolated operations on Splinter (Section 4.4.2); our numbers

are similar to those reported by others’ kernel-bypass stores [96]. Different context switch

costs are simulated to show the overheads of hardware-based isolation of tenant code. The

simulation only accounts for context switch costs; copying data across hardware isolation

boundaries has also been shown to have significant performance costs [98]. Nearly all

extensions will access data, which will force data copying when using hardware isolation

and hurt throughput further. Based on measurements we made on different processor

microarchitectures (Table 4.1), we simulate 1.40 µs of overhead for a basic context switch

and 2.16 µs for a KPTI [20] protected kernel (which mitigates attacks that can leak the

contents of protected memory [75]). The request pattern is uniform; all tenants make

89

the same number of requests. The results are similar with skew. The simulator is also

optimistic; whenever a request is made and an idle core is available at the store that last

processed a request from the same tenant, the isolation cost is assumed to be zero.

Figure 4.2 presents simulated throughput at different tenant densities. The baseline

represents an upper bound where extensions are run un-isolated at the storage system.

The simulations show that throughput with hardware isolation (irrespective of KPTI) is

significantly lower than the baseline. Even at just 16 tenants, context switch costs alone cut

server throughput by a factor of 1.8.

Overall, for these types of fast stores, hardware isolation limits performance and tenant

density. The challenges that we face in Splinter, and our design goals, stem from the need

to (nearly) eliminate trust boundary crossing costs, to keep data movement across trust

boundaries low, and to perform efficient fine-grained task scheduling.

4.2 Splinter Design
Each Splinter server works as an in-memory key-value store (Figure 4.3). Like most

key-value stores, tenants can directly get and put values, but they can also customize the

store at runtime by installing safe Rust-based extensions (shared libraries mapped into the

store’s address space) (Figure 4.3 1©). These extensions can define new operations on the

tenant’s data, including extensions that stitch together new data models in terms of the

store’s low-level get/put interface. Each tenant-provided extension is exported over the

network, so a tenant can remotely invoke the procedures it has installed into the store.

Tenants send requests to a Splinter store over the network using kernel bypass (2©).

Splinter currently only supports a simple, custom UDP-based RPC protocol, though other

optimized transports may provide similar performance [52]. Each tenant’s requests are

steered to a specific receive queue by the network card, improving locality (3©). Each

receive queue is paired with a single kernel thread (or worker) that is pinned to a specific

core. Each worker pulls requests from its receive queue and creates a user-level task for the

requested operation. Tasks provide an accounting context for resources consumed while

executing the operation, the storage needed to suspend/resume the operation, and a unit

of scheduling. Each worker has a task queue of new and suspended tasks, and it schedules

across them to make progress in processing the operations (4©). Scheduling is cooperative;

90

as tasks yield and are resumed, they store/restore their state, so when a worker schedules

a task no stack switch is performed. As tasks execute user-provided logic, they interact

with the store through a get/put interface similar to the one exposed remotely (5©); the

key difference is that the functions exposed to extensions take and return references rather

than forcing copies (Table 4.2).

Beyond fast kernel-bypass network request processing, Splinter’s speed depends on

exploiting the Rust compiler in two key ways: first, to enable low-cost isolation and,

second, to enable low-cost task switching. The two are intertwined. Splinter uses stackless

generators to suspend and resume running extensions, which require compiler support.

That is, the Rust compiler analyzes extension code, determines the state that needs to

be held across extension cooperative-yield/resume boundaries, and generates the code

to suspend and resume extension operations. No separate stack is needed, and the code

needed to yield/resume is transparent to the extension.

These lightweight tasks are key, but Splinter’s careful attention to object lifetimes,

ownership, and memory safety make them effective, since otherwise full context switch

would be needed between tasks for isolation. A key challenge in Splinter is ensuring its

fine-grained tasks from different trust domains—compiled to native code, and mapped

directly into the store’s memory—remain low-overhead while still operating within Rust’s

static safety checks. Low-overhead trust boundary crossings are essential to Splinter’s

design; they enable easy and inexpensive task switching, dispatch (Section 4.2.3), and work

stealing (Section 4.2.4), which keep response latency low and CPU utilization high across

all the cores of the store.

Another key challenge is that extension invocations introduce more irregularity into

request processing than a simple get/put interface. By avoiding hardware context

switches, Splinter keeps task switch costs down to about 11 nanoseconds, but the difficult

tradeoff is that this forces it to handle these variable workloads without traditional

preemptive scheduling. At the same time, it cannot use fully cooperative scheduling, since

the store does not trust tenants to supply well-behaved extensions. Splinter’s per-worker

task scheduler resolves this tension by multiplexing long-running and short-running tasks

to build mostly-cooperative scheduling. This is backed up by having an extra thread that

acts as a watchdog for the others to support preemption when needed.

91

4.2.1 Compiling and Restricting Extensions

The Splinter store cannot directly load native code provided by tenants. Code must

be compiled and type checked to ensure its safety before it can be loaded into a store, and

extensions face some extra restrictions that must be enforced at compile time. The compiler

is trusted and must be run by the storage provider. Tenants must not be able to tamper with

the emitted extension, so it must be loaded directly into the store by the provider or the

provider must ensure its integrity in transit between the trusted compiler and the store.

Aside from Rust’s standard type and lifetime checks (Section 4.2.1.2), Splinter extensions

have the following static restrictions:

1. No Unsafe Code: Unsafe code could skip compiler checks resulting in memory

unsafety. So, our wrapper over rustc disallows unsafe code in extensions

(Section 4.2.1.3).

2. Module Whitelist: Code from external dependencies could include unsafe code,

and that unsafe code should not be incorporated into untrusted extensions unless

it is trusted. Even beyond memory safety, such unsafe blocks could, for example,

make syscalls. So, our wrapper restricts external dependencies to modules that are

reexported by a Splinter library that includes many standard functions and types.

This restriction applies to the standard library (std) as well: the wrapper only

exposes whitelisted std functionality to extensions.

These checks combine with three other runtime guarantees to ensure isolation: the store

only accepts or provides references to insert/fetch a value under a key if the same tenant

owns both the extension and the key (Section 4.2.2); it prevents uncooperative extensions

from dominating CPU time and stack, heap, or record memory (Section 4.2.3); and it

catches panics (runtime exceptions) and stack overflows that occur while executing an

extension operation (Section 4.2.3). Next, we describe what guarantees this gives the

storage provider and its tenants; the runtime checks are described later along with details

about the execution model.

92

4.2.1.1 Trust Model

There are two stakeholders for a Splinter store: the storage provider and storage

tenants. Splinter should protect tenants from each other and the provider from the tenants.

Tenant misbehavior could be unintentional, in the form of bugs or unexpectedly high

application load, or it could be malicious, in the form of tenants attempting to read

others’ data, deny service, or use an unfair fraction of resources. We consider threats from

“within” the store; threats from “without” such as an attacker gaining root access to the

machine by exploiting other services running on it should be dealt with using standard

security best practices.

Aside from providing good quality of service to tenants, service providers have one

key concern: protecting the secrecy and integrity of tenants’ data. Extensions do not share

state with one another, and Splinter provides no means for interextension communication.

So, no complex sharing policies are needed; Splinter’s only goal is extension isolation.

Rust references act as capabilities; they ensure that extensions cannot fabricate arbitrary

references to storage state or to other tenants’ state (Section 4.2.1.2).

Like any database, Splinter’s Trusted Computing Base (TCB) includes the libraries,

compilers, hardware, etc. on which it is built; while this code is not directly exposed to

tenants, vulnerabilities in it can still lead to exploits. Dependencies include LLVM [63], the

CPU, the network card (NIC) and its kernel-bypass libraries (DPDK [44]).

Splinter’s design provides a larger attack surface relative to other databases in some

ways, but decreases the attack surface in others. Because it allows execution of tenant

code, Splinter’s safety depends on the soundness of Rust’s type system, which is not

proven. While some soundness issues in the compiler have been found [47], progress

is being made in proof efforts [48], and Splinter automatically benefits from such progress.

If extensions cannot violate Rust’s safe types, the remaining avenue for attack is unsafe

code in the system; extensions cannot supply unsafe code, but they can indirectly call it in

the interfaces and libraries that Splinter explicitly exposes to extensions. On the plus side,

extensions must break one of these layers of protection before they can attack other code:

they do not have direct access to system libraries, system calls, etc. and can only gain it by

breaking out of Rust’s safe environment.

Splinter decreases the attack surface with respect to the virtual memory system –

93

both hardware and kernel components. Because it does not rely on virtual address

translation for isolation, recent Meltdown speculation attacks do not affect its design [75];

however, Spectre-based speculation attacks do affect Splinter [57, 58]. Like any system

that runs untrusted code or operates on untrusted inputs, Splinter would require special

steps to mitigate these side channels. It already limits them in part because it does not

provide explicit timing functions to extensions. Full protection will require compiler

support [14], hardened storage interfaces (like the Linux kernel [21]), and hardened

libraries for extensions. The measurements in this chapter do not include these mitigations.

4.2.1.2 Memory Safety

Rust’s memory safety (and data race freedom) is guaranteed through a strong notion

of ownership that lets the rustc compiler reason statically about the lifetime of each

object and any references to it. The compiler’s borrow checker statically tracks where

objects and references are created and destroyed. It ensures that the lifetime of a reference

(initially determined by its binding’s scope) is subsumed by the lifetime of its referent.

Rust separates immutable and mutable references; an immutable reference is a reference

that when held restricts access to the underlying object to be read-only. The compiler

disallows multiple references (of either type) to an object while a mutable reference exists,

which prevents data races.

Often, the lifetime of an object cannot be restricted to a single, static scope. This

is especially true in a server that processes requests across threads, where the lifetime

of many objects (RPC buffers, extension runtime state) is defined by request/response.

Rust provides various accommodations for this, such as moving ownership between

bindings and runtime reference counting that is safe but implemented in unsafe Rust.

Splinter efficiently handles these issues while working within rustc’s static safety

checks (Section 4.2.2.2). Unlike C/C++ pointers, Rust references cannot be fabricated

or manipulated with arithmetic; they always refer to a valid, live object. Rust supports

pointers but their use is restricted for safety.

4.2.1.3 Restricting Unsafe Rust

An important extra restriction that Splinter imposes beyond Rust is that extension code

must be free from unsafe Rust, a superset of the language that allows operations that could

94

violate its safety properties. For example, unsafe code can dereference pointers, perform

unsafe casts, omit bounds checks, and implement low-level synchronization primitives.

All unsafe code in Rust requires an unsafe block, which Splinter disallows.

Extensions cannot implement unsafe code, but they can invoke it indirectly. This is

often desired. For example, extensions execute some unsafe code when they ask the

store to populate a response packet buffer. In some cases it is not desired. For example,

file I/O can be induced through the Rust standard library. To prevent this, Splinter

restricts extensions to use a subset of the standard library that does not include I/O or

OS functionality.

Our experience has been that safe Rust combined with basic data structures from its

standard library are sufficient to write even complex imperative extensions like Facebook’s

TAO [11]. In cases where unsafe code could provide a performance benefit, the store can

provide that functionality if it is deemed safe to do so, since it is trusted and can include

unsafe code (Section 4.2.2.3).

4.2.2 Store Extension Interface

The interface that extensions use on the server to interact with stored records is similar

to the external, remote interface that clients use in any conventional key-value store

(Table 4.2). The main differences are in careful organization to eliminate the need to copy

data between buffers.

All persisted records are stored in a table heap. Keeping records in a identifiable region

will be essential to support replication, recovery, and garbage collection as Splinter’s

implementation evolves.

4.2.2.1 Storing Values

Extensions can put() data they receive over the network or new values that they

produce into the store. When an extension invocation request is received from a tenant,

the store invokes the indicated operation. Incoming data are in a packet buffer that is

registered with the NIC. Those buffers cannot be used for long-term storage because the

NIC must use them to receive new requests; data that must be preserved need to be copied

into the store.

Splinter tries to ensure that data can be moved from NIC buffers into the store with

95

a single copy. This requires put() to be split into two steps. First, an extension calls

alloc(table, key, length) to allocate a region in the table heap for a record. The

extension receives a bounded slice (a view) to the underlying allocated memory. Then,

it copies data from the request’s receive buffer, unmarshalling as it does so, if needed.

Extensions use args() to directly access data (by reference) in the receive buffer to perform

this copy. An extension may produce its own data values as part of this process either from

input arguments or together with values read from the store. Once the allocated region is

properly populated, it is inserted into the table with put(), which takes ownership of the

buffer and inserts it into a hash table.

Problems like use-after-free are prevented by Rust’s borrow checker; extensions cannot

hold references to a buffer once ownership is transferred to the store, eliminating the

need for copying data into the store for safety. The receive packet buffer has the same

guarantee. Rust’s borrow checker ensures references to it cannot outlast the life of the RPC,

eliminating the need to copy received arguments or data into the extension for safety.

Values stored by put() must be allocated from the table heap; extensions should not

be able to pass arbitrary (heap or stack allocated) memory to put(). Splinter enforces this

so that it can optimize record layout; keys and values can be forced into a single table

heap allocation, which eases heap management and eliminates cache misses for hash table

lookups. As a result, Splinter wraps allocations with a type (WriteBuf) that extensions

cannot construct, ensuring they can only pass buffers acquired from alloc(). WriteBuf

has a method to get a reference to the underlying buffer, so extensions can fill it.

4.2.2.2 Accessing Values

Extensions can interact with stored data in a similar way, requiring only one copy into

a response buffer to return values from the store. When an extension procedure is invoked,

it is also provided with a response buffer that can be incrementally filled via resp(). On

each extension procedure invocation, the store prepopulates the response buffer’s packet

headers; extensions can only append their data after these headers. All response buffers

are preregistered with the NIC for transmission.

Extensions call get(table, key), and they receive back a reference to the underlying

portion of the table heap that contains the value associated with key. No copying is needed

96

at this step; the store tracks this reference and prevents the table heap garbage collector

from freeing the buffer while an extension has a live reference to the data. Since values

are never updated in place, extensions see stable views of values. Extensions can compute

over the value or many values concurrently (by calling get() multiple times), and they

can copy portions of the data they observe or any results they compute directly into the

response buffer. Once the extension procedure has populated the response buffer, Intel’s

DDIO [45] transmits the data directly from the L1 cache, which avoids the cost of memory

access for DMA of stored data.

Figure 4.4 and Figure 4.5 show an example of how this works for a simple extension

that sums up a set of values stored under keys that are listed as part of another stored

value without any extra data copying. In Line 4, the extension obtains a reference to its

transmit buffer to find which key it should look up in order to find a list of keys that will

be aggregated over. Line 6 passes a reference to that same location to the store in order to

obtain a reference to the value that contains the key list. In Line 8, still without copying,

the extension iterates over that value in chunks equal to the length of the keys stored in

the value. Each step of the iteration produces a reference that the extension uses to get()

references to values for each of the stored keys, one at a time (Line 9). Using each of those

references, it extracts a field that it adds to sum, a local variable. Finally, the extension

passes references to status and sum to append them to the response buffer. In all, data

copying is only forced where it is needed, so the compiler has flexibility in optimizing

extension code.

The store’s get() call returns a ReadBuf rather than a plain slice (&[u8]) in order to

satisfy Rust’s borrow checker. Calling get() cannot return an immutable reference or slice

to a stored value, because the borrow checker would not be able to statically verify that

the reference would always refer to a valid location. For example, the compiler could

not be sure that the store would not garbage collect the value while the reference still

exists. Furthermore, extension invocations are generators, and they must yield regularly

(Section 4.2.3). Yielding marks the end and start of a new static scope, so each time the

generator is resumed, the calling scope could vary. Any obtained references to a stored

value could not be held across yields, because the borrow checker would not be able to

verify that those references would still be valid on reentry.

97

The ReadBuf returned by get() solves this. It is a smart pointer that maintains a

reference count to ensure the underlying stored object is not disposed, and it allows the

extension code to (re)obtain a reference to the underlying object data. Once a ReadBuf

is returned to a generator, it is stored within the generator’s local state, so the generator

owns this ReadBuf. Extensions cannot hold references between yields, but by working

with the ReadBuf it can (transparently) reobtain a reference to the data without performing

another get(). Rust’s Arc smart pointer does the same; ReadBuf hides its constructor

from extensions and disallows duplication. This prevents extension code from creating

ReadBufs that persist beyond the life of a single request/response, which could otherwise

hold back table heap garbage collection.

4.2.2.3 Avoiding Serialization and Deserialization

Allowing extensions to interact directly with receive buffers, transmit buffers, and table

heap buffers eliminates copying for opaque data, but Rust’s safety makes avoiding some

copies harder. Extensions cannot perform unsafe operations, otherwise they could thwart

Rust’s memory safety guarantees. Unfortunately, this means safe Rust code cannot cast an

opaque byte array to/from different types to avoid the need to serialize/deserialize data.

For example, if args() returned an 8-byte slice an extension may desire to treat that slice

data as a 64-bit unsigned value. Safe Rust disallows this.

For small arguments, extensions can convert between formats with arithmetic, but for

richer data models, arguments, stored values, and responses will have more complex,

structured formats. To accommodate this, Splinter’s interface provides a mechanism for

extension code to convert between byte slices and references to a small set of types. If

a slice (&[u8]) is naturally aligned to the desired type, Splinter allows conversion to a

reference of that type (&T), where T is limited to signed/unsigned integers and compound

types built from them.

These casts are safe, but they are meaningless across architectures. As a result, they can

only be used between a client and the store when they have the same underlying platform

(e.g., x86-64). Similarly, they can only be used with extensions’ get/alloc/put interface if

all stores in the system (e.g., before/after recovery, source/destination for migration) have

matching hardware platforms.

98

4.2.3 Cooperatively Scheduled Extensions

Splinter is designed to work well regardless of whether tenant-provided extensions are

short and latency-sensitive or long-running and compute- or data-intensive. In fact, the

best mix of tenants will mix these operations, keeping CPU, network, and in-memory

storage better utilized than would be possible with a single, homogeneous workload.

Even so, latency-sensitive operations can easily suffer under interference from heavier

operations.

This means Splinter must multiplex execution of tenant extension invocations not

only across cores but also within a core. Long-running procedures cannot be allowed to

dominate CPUs, but preemptive multitasking is too costly even when page table switching

can be avoided.

Rust’s lightweight isolation is part of the solution, since calls across trust domains have

little overhead. Splinter already relies on rustc for safety, but it can also rely on it to help

minimize task switching costs. When a new request comes into the store, Splinter calls into

the responsible extension to allocate a stackless coroutine (a generator) that closes over the

state needed to process the request. Generators support a yield statement that suspends

execution and enables cooperative scheduling; extension code is expected to periodically

call yield to allow other tasks to run. rustc produces generators specific to the extension,

so the cost to create them and switch between them is low. Splinter invokes the created

generator. Whenever it yields, Splinter’s per-core task scheduler runs another generator

task. Since yielding requires no costly hardware boundary crossing and no stack switch, it

is fast and inexpensive to yield frequently.

Like other similar systems, to avoid jitter due to kernel thread context switches and

migrations, Splinter runs the same number of worker threads as cores in the system

(Figure 4.3), and each is pinned to a specific core. Generators are invoked on the worker’s

stack, avoiding a stack switch. Note that the compiler generates the structure to hold a

suspended task’s state across yields. Consequently, a worker’s stack never concurrently

contains state for different tenants (or even tasks); furthermore, whenever a task yields or

completes, the worker’s stack contains no extension state. This makes it easier to handle

uncooperative extensions (Section 4.2.3.1) and load imbalance (Section 4.2.4).

99

4.2.3.1 Uncooperative and Misbehaving Extensions

All calls through the store interface include an implicit yield, so extensions can only

dominate CPU time with infinite or compute-intensive loops. Nonetheless, such behavior

can disrupt latency-sensitive tasks and constitute a denial-of-service attack in the limit.

To solve this, Splinter uses ideas from user-level threading for latency-sensitive

services [104] and adapts them for untrusted code. An extra (mostly idle) thread acts

as a watchdog. If a task on a core fails to yield for a few milliseconds, the watchdog

remedies the situation. First, the worker thread on the core with the uncooperative task is

repinned to a specific core that is shared among all misbehaving threads and low-priority

background work that the store performs. Second, a new worker kernel thread is started

and pinned to the idle core left behind after the misbehaving thread was repinned. Finally,

the new worker steals the tasks remaining in the scheduler queue for the repinned worker

and resumes execution for these tasks. Note, this is safe in part because all of the state of

a suspended task is encapsulated. Tasks only have state on a worker’s stack if they are

running, so the misbehaving task is the only one the new worker cannot steal. Whenever

a misbehaving task finally yields, the scheduler on that worker realizes that it has been

displaced, and the worker thread terminates along with the task.

Hence, misbehaving tasks do not block other requests, but they can still cause

disruption. Creating and migrating kernel threads is expensive, so there must be a

disincentive against forcing watchdog action. Tenants that run uncooperative tasks will

experience poor quality of service, since they must share a core with other disruptive

work. Furthermore, when a worker is repinned the watchdog also takes away access to its

receive and transmit queues, so tenants cannot get responses from bad requests and, thus,

benefit from their misbehavior. Even so, billing policies should ensure such behavior is

unprofitable.

Aside from infinite loops, the store must also protect against other things that cannot be

prevented with compile-time checks. For example, Rust does not have general exceptions,

but extensions can raise exceptions with operations like division by zero that raise a

panic. Splinter must “catch” these panics or they would terminate the worker, since

panics unwind the call stack and worker threads call extension code on their own stack.

Fortunately, Rust provides a mechanism to do this, and Splinter catches panics and

100

converts them to an error response to the appropriate client. Stack overflows and violation

of heap quotas are handled similarly.

4.2.4 Tenant Locality and Work Stealing

The Splinter store avoids any kind of centralized dispatch core to route requests to

cores, since this can easily become a bottleneck [96]. At the same time, it needs to balance

requests across cores, while still trying to exploit locality to avoid cross-core coordination

overheads. To do this, clients route each tenant’s requests to a particular core. This

provides cache locality, it reduces contention, and it improves performance isolation.

Splinter configures Flow Director [43] so that the NIC directly stores packets with a specific

destination port number in a specific receive queue. Each receive queue is paired to a single

task dispatcher owned by a worker thread (pinned to a core). As a result, tenants can steer

requests to specific cores by placing their tenant id in the UDP destination port field.

However, this approach alone can leave cores idle under imbalance, and, as a

multitenant store, it is important for the system to deliver good resource utilization.

Whenever the scheduler on a core has no incoming requests in its local receive queue,

it attempts to steal requests from a neighbor’s receive queue (Figure 4.6). Transmit queues

are not bound to specific (server-side) source ports, so the response can be sent directly

from the core that stole the request. This simple form of soft affinity works well, and,

since tasks are lightweight, it is also relatively easy for Splinter to take advantage of idle

compute in the system without costly thread migration.

4.3 Implementation
The Splinter store is implemented in 7,500 lines of Rust. It uses the NetBricks network

function virtualization framework [98] as a wrapper over the DPDK [44] packet processing

framework. Splinter also includes 1,100 lines of Rust that provide the store interface

to extensions. Extensions import it and compile against it. The store also imports the

interface, since it defines how the store interacts with extensions to create a new generator

for an invocation. The Splinter codebase is open sourced and freely available on github at

the following link: https://github.com/utah-scs/splinter.

The store need not be written in Rust, but doing so has advantages. It prevents data

101

races and segmentation faults within the store, but it also lets the store use Rust’s type

system and lifetimes to ensure that mistakes are not made with lifetimes of objects and

references handed across trust boundaries, which an adversary could exploit.

4.4 Evaluation
We evaluated Splinter on five key questions:

1. What is Splinter’s isolation overhead?

2. Does Splinter support high tenant densities?

3. How does Splinter perform under operations with heterogeneous runtimes?

4. Do representative extensions see latency and throughput benefits?

5. When does performing operations client-side outperform extension-based

operations?

4.4.1 Experimental Setup

All evaluation was done on two machines consisting of one client and one storage

server on the CloudLab testbed [106] (Table 4.3). Both used DPDK [44] over Ethernet

using Mellanox NICs for kernel-bypass support. The server was configured to use only

one processor socket; out of the ten hardware cores, eight were used for request processing,

one was used for management and to detect misbehaving extensions, and the last one was

used to hold all misbehaving extensions once detected.

To evaluate Splinter and its isolation costs under high load and density, the client ran

a YCSB-B workload [18] (95% gets, 5% puts; keys were chosen from a Zipfian distribution

with θ = 0.99) that accessed tenant data on the storage server. Unless stated otherwise,

the client simulates 1,024 total tenants. Tenant ids for each request were chosen from a

Zipfian distribution with θ = 0.1 (unless stated otherwise) to simulate some tenant skew.

Each simulated tenant owns one data table consisting of 1 million 100 B record payloads

with 30 B primary keys (totaling about 120 GB of stored data). The client always offered

an open-loop load to the server.

102

4.4.2 Isolation Overhead

Figure 4.7 compares the performance of YCSB-B under two different cases. In one case

(“Native”), the Splinter store executes get and put operations like any other key-value store

would; none of Splinter’s extension functionality is used. This case sets an upper-bound

for Splinter’s performance. In the other case (“Extension”), that same get or put is executed

as part of a tenant-provided and untrusted Splinter extension. This teases apart the

isolation and dispatch costs for Splinter to run arbitrary tenant-provided logic. For offered

loads of less than 3.5 million operations per second (Mops/s), median latency with and

without isolation are nearly identical (about 9 µs).

Splinter extensions have some overhead, so the store saturates earlier when gets/puts

are executed through extensions. With isolation, the median latency spikes above

4 Mops/s, reaching 59 µs at 4.3 Mops/s. Without isolation, this spike comes at 5.3 Mops/s.

Tail latency (99th-percentile) begins to show a difference at 3 Mops/s. On the whole, in

this pessimal workload with extremely fine-grained operations all invoked as extensions,

Splinter’s isolation costs still only impact throughput of the store by about 19%. Compared

to the 1.8× (simulated) penalty for hardware-based isolation in Figure 4.2, this is a

significant improvement (a 1.2× penalty over native get/put).

Figure 4.8 compares YCSB-B scalability when the server is approaching saturation

(median latency > 10 µs) under the native and extension-based cases. Invoking get and

put operations from extensions instead of directly has no impact on scalability; scalability

is near linear in both scenarios. However, as pointed out above, it does affect throughput.

At one core, throughput is reduced by 200 Kops/s (18%), while at eight cores, the reduction

is 700 Kops/s (17%). This shows that, though extensions do increase the number of cycles

each core spends processing requests, it does not come at the cost of significant increased

coordination between the cores.

4.4.3 Tenant Density

Figure 4.9 shows how varying the number of tenants sharing the store impacts its

throughput. As in the prior experiments, tenants run YCSB-B under two cases: without

isolation (“Native”) and with isolation (“Extension”), so the experiment captures extension

isolation overheads. The results show that Splinter can efficiently support high tenant

103

densities with minimal overhead. With isolation, the throughput at 1,024 tenants is

3.3 Mops/s, only 700 Kops/s less than the throughput at eight tenants. Additionally, the

throughput with isolation is consistently within 22% of the throughput without isolation.

In practice, offered tenant load will be skewed, since some tenants are likely to have

heavier workloads than others. This results in a few heavy workloads that must share

the store with a long tail of many more passive ones. We ran an experiment to show

that Splinter can handle this imbalance and that its work stealing and tenant locality help

maintain Splinter’s response times under high load.

Recall that Splinter routes requests for a tenant to a specific core, but cores steal work

from each other to combat imbalance. To gauge the benefits of this approach, we compare

it against a tenant-partitioned approach with no work stealing and an unpartitioned

approach that sprays requests over all cores in a tenant-oblivious fashion. We vary tenant

skew, which affects all three approaches.

Figure 4.10 shows the results. These measurements are with an offered load of

4 Mops/s, keeping the store close to saturation. In each case, the store meets the

offered load by running at 4 Mop/s. Without work stealing, Splinter’s tail latency

suffers by a factor of 2 under high tenant skew (0.9 and 0.99). In this case, partitioning

helps throughput due to locality and reduced contention (as evidenced by its relatively

consistent median response time), but queues become imbalanced hurting tail latency.

The unpartitioned approach does not respond as significantly to tenant skew though it is

slower overall, as expected. Unpartitioned execution results in 42% to 86% worse median

latency with 38% to 155% worse tail latency.

4.4.4 Request Heterogeneity

Figure 4.11 investigates the impact of mixing short operations with cooperative longer-

running operations. We configured our client so that 15% of extension operations

performed 128 gets on the storage server. The rest of the requests invoked an extension

that performed one get. We varied the number of gets made by the longer extension

per yield (frequency). These measurements were made at an offered load of 1.1 Mops/s.

Increasing the frequency of yields improves median latency of the smaller operations by

42% until a frequency of 8 gets per yield. Yields add some overhead, and yielding more

104

frequently pushes the store to saturation in this case. As a result, all requests see increased

response times. Extensions should yield frequently, but yielding too often is wasteful.

Splinter may be able to help with this in the future; Splinter could provide extensions with

a yield that is ignored if called too quickly in succession, avoiding the full yield cost.

Figure 4.12 shows how uncooperative extensions impact system performance. Here,

the client invoked a small fraction of extension operations that executed an infinite loop.

The remaining fraction of requests invoked a small extension that performed a single get.

Splinter performs well in the presence of misbehaving extensions. Throughput is steady

at 3 Mops/s irrespective of the fraction of misbehaving requests. Median latency is not

shown, but it is steady as well. Tail latency suffers as more requests misbehave, though it

is within 100 µs for fractions as high as one in a million requests.

Note that one in a million requests (1e-6) is harsh. The store can execute more than 4

Mop/s, so this represents a misbehaving invocation starting every quarter second; at 1e-5

misbehavior starts about once every 25 ms.

4.4.5 Aggregation Extension

Online data aggregation is a common task for applications. For example, a user

might send a query demanding a movie studio’s total earnings in the year 2017. With

a key-value data model, this would require two round-trips to storage: one to fetch the

list of movies made by the studio and one to fetch the box-office earnings of each of the

movies. Splinter improves the user-facing and server-side performance of these types of

queries by allowing applications to inexpensively embed their data model (studios and

movies) and operations (total earnings aggregation) within storage.

Figure 4.13 compares a completely client-based and a Splinter extension-based

implementation of such an aggregation over four records. Each of the store’s 1,024

tenants owned a table with 300 K indirection lists pointing to 1.2 million records, totalling

about 100 GB of stored data. The client-based implementation first performed a get()

to retrieve an indirection list followed by a multiget() (a single RPC requesting values

for multiple keys) to fetch all of the records indicated in the indirection list. The first

field from each of the returned objects is summed up into a single 64-bit result. The

extension-based implementation invoked a Splinter extension called aggregate() with

105

the same functionality as the client-based approach.

Pushing the aggregation from the client to the server has two key benefits. First, it

improves performance from the client’s perspective: the extension-based implementation

reduces median latency by 38% (from 16 µs to 10 µs) under low load with larger gains

under higher loads. This improvement is mainly due to a reduction in the number of

round-trips; unlike the client-based extension, the aggregate() extension does not need

to wait for the store to return an indirection list before it can start aggregation. Second,

it improves performance from the server’s perspective as well. Splinter’s extension

invocations are more expensive than plain get() operations (Section 4.4.2), but they

eliminate some of the costly network and RPC processing. Hence, saturating throughput

improves from 1.2 M to 1.6 M aggregations per second.

Note, this improvement comes in a challenging case for Splinter; at 40 Gbps, Splinter

is never network limited. These results show that even if a store is CPU-limited, pushing

compute to the store can still provide a throughput benefit, since it can mitigate request

processing overheads. On slower networks, Splinter would provide more of a benefit since

extensions can reduce network load.

Figure 4.14 shows the impact of the number of records aggregated on the saturating

throughput of the extension-based and client-based implementation. In both approaches,

increasing the number of records aggregated increases the work the store has to do per

request (aggregate()/multiget()), and, hence, decreases the overall throughput of the

system. However, if that work is simple (like summation) it is always better to aggregate at

the store. The gain in saturating throughput of the extension-based aggregation is always

more than 50%.

For compute-intensive operations, the extra CPU cost of running extensions at the

store can outweigh the gains of fewer RPCs. Figure 4.15 explores this effect. After

adding the first field of two records, each operation raises the result to the power n (with

n 64-bit multiplications). Using an extension, increasing n above 2,000 slows the store

and decreases saturating throughput from 1.8 M to 800 K aggregations per second. The

client-side approach can hold throughput constant at 1.6 M aggregations per second; the

client has enough idle CPU capacity to compute the result. This shows that extensions are

ideal for operations with modest amounts of compute. For compute-intensive operations

106

over data stored on high-load servers, clients should fetch data and perform operations

locally.

4.4.6 TAO Extension

TAO [11] is a graph-oriented in-memory cache used at Facebook to hold objects from

the social graph and associations between those objects. TAO is well-suited to Splinter.

It is designed for interactive data, but it embeds knowledge about Facebook’s workload

to decrease round-trips to the store, which eliminates client-side stalls and improves

server-side efficiency. We have implemented its simple operations as an 800-line Splinter

extension.

Full details of TAO are beyond the scope of this chapter, but the basics are simple.

Aside from object put/get, TAO’s association lists (e.g., user1’s “likes”) allow one object

to be associated to another via a typed, directed edges. For example, user1’s “likes”

may be represented as an association list (user1, likes)→ [post1, post32]. Association

lists provide simple operations for adding, removing, and counting associations. Entries

in association lists are timestamped, and range operations over association lists to fetch

subsets of them are common (“get the first 10 entries in the (user1, likes) association

list”).

Figure 4.16 shows Splinter’s performance under three different configurations: an

extension-based approach (Extension), a client-based approach (Native), and a combined

approach (Combined) that implemented object get using native get() operations, and

assoc range using an extension. The workload was configured to issue a mix of 60%

object get and 40% assoc range operations. We picked this ratio based on Facebook’s

reported TAO workload [11], which is dominated by reads (99.8%) mostly from these two

operations. Each of the 1,024 tenants on the storage node owned a graph with half a million

objects and two million edges (associations), totalling about 100 GB of stored data.

Since a significant fraction of requests are single round-trip object gets, the client-

based approach has a better saturating throughput than the extension-based approach.

However, combining the two improves saturating throughput from 2.8 Mop/s to

3.2 Mop/s at a latency of 31 µs; the native get() helps eliminate the isolation overhead

while executing an object get, and the extension helps reduce the number of round-trips

107

required by an assoc range.

This makes Splinter competitive with FaRM’s TAO implementation, which is the fastest

known implementation. Interestingly FaRM, takes the opposite approach of Splinter.

On FaRM, TAO operations use multiple RDMA reads and careful object layout. FaRM

reported 6.3 Mops/s (about 200 Kop/s/core) with a 41 µs average latency; Splinter

performs about 400 Kops/s/core with lower latency. Differences in hardware and

experimental setup likely account for some of the differences, but it shows Splinter’s

CPU-active server approach is competitive against FaRM’s CPU-passive server approach.

Furthermore, Splinter maintains a simple, remote procedure call interface, and the TAO

extension enforces strong abstract data types. Splinter TAO clients have no knowledge of

the internal layout of the stored data objects.

4.5 Related Work
Shipping computation to data and isolating untrusted code are well-studied, and

Splinter builds on prior work. However, prior work does not address multitenancy at

Splinter’s granularity and number of tenants; further, no work addresses these issues with

its throughput and latency goals, which are far beyond most cloud storage systems.

4.5.1 Low-latency RDMA-based Storage Systems

Low-latency, high-throughput key-value stores are now thousands of times faster than

conventional cloud storage by exploiting RDMA, kernel-bypass, and DRAM [28, 29, 49, 73,

74, 96]. These systems are well-understood for small, regular workloads, but their simple

(get/put, read/write) interfaces make them easy to optimize internally at the expense of

application efficiency, since they force clients to make many round trips to storage and to

compute locally [27]. RDMA lowers CPU overhead for transmit, but it cannot make up

for the fundamental inefficiency of moving large amounts of data over the wire; receivers

must still perform the same computation on the data that a server could have. Splinter

eliminates this waste, while still using efficient kernel-bypass networking. At 40 Gbps

a Splinter store is never network bound, so combining Splinter’s approach with (one- or

two-sided) RDMA verbs could provide a benefit by freeing up additional compute on store

servers.

108

4.5.2 Pushing Computation to Storage

MapReduce [24] and Spark [132] ship code to data sets, though latency is not a concern.

Even when compute is shipped to a storage (HDFS [114]) node, data are still copied via

interprocess communication. Untrusted extensions, like those in Splinter, could eliminate

these overheads.

Some distributed systems and frameworks support composing internal storage

abstractions to synthesize new services [3, 4, 12, 37, 77, 113]. Malacology [113] claims

storage extensions have been popular in the Ceph distributed file system, showing that

extensions are useful to developers. In these systems, extensions are trusted, so they

do not work for cloud storage; Splinter is also focused on tight integration of fine-

grained computation and storage rather than on coarse composition of software services.

Comet [35] embedded sandboxed Lua extensions into a decentralized hash table to allow

application-specific extensions to get/put behavior. Lua’s entry/exit costs are low; it is

unclear how the performance of its just-in-time (JIT) compiled runtime would compare to

Splinter.

4.5.2.1 SQL

SQL may be the most widely used approach to ship computation to data, and it also

supports use as a stored procedure language [87, 95]. In-memory databases have placed

pressure on performance, resulting in JIT compilation for SQL [34, 91]. With JIT, queries

run fast, and calls back-and-forth between the database and user logic are inexpensive.

SQL is type safe, so it is also easy to isolate. SQL’s main drawback is that it is declarative.

Often, this is a benefit, since it can use runtime information for optimization, but this

also limits its generality. Implementing new functionality, new operators, or complex

algorithms in SQL is difficult and inefficient. Some have extended SQL for specific

domains, like graph processing [90], scientific computing [76, 99], and simulation [13],

showing that SQL by itself is insufficient for many domains.

4.5.2.2 Native-code Extensions

The popular Redis [105] in-memory store supports native extensions. In FaRM [28, 29],

an RDMA-based in-memory store, applications are written as native, storage-embedded

functions that are statically compiled into the server. These systems do not allow

109

extensions to be loaded at runtime, and application code is trusted so it does not work

for multitenant cloud storage. Similarly, H-Store [53], VoltDB [117], and Hazelcast [38]

are in-memory stores that support Java-based procedures, though none of them provide

multitenancy.

4.5.3 Fault Isolation

Software-fault isolation (SFI) sandboxes untrusted code within a process (or OS

kernel [46, 112, 120]) with low control transfer costs [10, 32, 36, 78, 131]. Both hardware

isolation [119] and SFI [126] were applied to Postgres [116], which pioneered database

extensions [124]. SFI still requires protected data to be copied in/out of extensions, since it

relies on hardware paging or address masking that can only restrict access to contiguous

memory regions.

Language-level approaches to kernel extension [9, 40] closely match Splinter’s design

and goals. SPIN let language-isolated extensions run as part of the kernel. It eliminated

runtime overheads (aside from garbage collection), since extensions were compiled; it

eliminated control transfer overheads, since it did not require page table switching; and

it eliminated copying between protection domains, since type-safe pointers worked as

capabilities. Like Splinter, where tenants must write Rust code, a key downside of SPIN

was that extensions had to be written in Modula-3, not C, so legacy code could not be

used. Java also “sandboxed” applets using type-safety and specialized class loaders, which

supported inexpensive control transfer and data access between domains [127].

Using Rust for low-cost, zero-copy isolation has been used for inexpensive software

fault isolation both generally [5] and for network packet processing pipelines [98]. Splinter

builds on these ideas, bringing them to storage and moving beyond static domains to a

runtime extensible service. Tock [70] is an embedded OS that decomposes its kernel into

untrusted capsules by exploiting Rust’s safety. Tock’s capsules are similar to Splinter’s

extensions, but they do not protect against denial of service (infinite loops) and capsules

are static – they cannot be added to a running kernel. These also differ from Splinter in that

they assume a small number of trust domains; they are targeted at software decomposition.

Splinter targets dense multitenancy with no static bound on the number of trust domains.

110

4.6 Conclusion
In-memory storage can significantly accelerate data-intensive applications, including

those that need fine-grained and real-time access to data. However, as Dennard scaling

ends, future cloud storage must not only be faster but also more efficient. Splinter shows

that soon legacy hardware isolation techniques will limit resource provisioning granularity

in the cloud, but it also provides a way forward. Systems must evolve to support granular,

low-overhead shipping of compute to storage, and lightweight isolation between small

compute tasks. Splinter works toward that evolution by discarding hardware isolation

in favor of static safety checks. As a result, it supports thousands of tenants that can all

access data in tens of microseconds while customizing storage operations to their needs

and while performing millions of remote operations on modern multicore machines.

111

Table 4.1: Context switch overhead for different Intel Xeon architectures as measured on
CloudLab. Each number represents the median of a million samples. Based on these
measurements, we chose 2.16 µs and 1.40 µs for the context switch overhead with and
without KPTI in our simulations.

Xeon Architecture Context switch delay (µs)
Pre KPTI KPTI

D-1548, Broadwell 1.60 2.40
E5 2450, Sandy bridge 1.50 2.48
Gold 6142, Skylake 1.40 2.16

Table 4.2: Extensions interact with the store locally through an interface designed to avoid
data copying.

Store Operations for Extensions

get(table: u64, key: &[u8])→ Option〈ReadBuf〉
Return view of current value stored under 〈table, key〉.

alloc(table: u64, key: &[u8], len: u64)→ Option〈WriteBuf〉
Get buffer to be filled and then put under 〈table, key〉.

put(buf: WriteBuf)→ bool
Insert filled buffer allocated with alloc.

args()→ &[u8]
Return a slice to procedure args in request receive buffer.

resp(data: &[u8])
Append data to response packet buffer.

Table 4.3: Experimental configuration. Evaluation used one machine as server and one as
client. Only the NIC-local CPU socket was used on the server.

CPU 2×Xeon E5-2640v4 2.40 GHz
10 cores (20 hardware threads) per socket

RAM 1 TB 2400 MHz DDR4

NIC Mellanox CX5, 40 Gbps Ethernet

OS Ubuntu 16.04, Linux 4.4.0-116,
DPDK 17.08, 16×1 GB Hugepages,
Rust 1.28.0-nightly

112

Application

Storage

get()/put()

fn find_in_tree(n: &Node, key: u64)
-> Option<Value>

{
if n.key == key { // Found correct value
Some(n.value)

} else {
// Traverse left or right
let next = if key < n.key { n.left }

else { n.right };
if let Some(next) = next {

// Fetch each node from storage
find_in_tree(get(next), key)

} else {
None // Break if dead end

}
}

}

Figure 4.1: Tree traversal using get() operations over a key-value store. Each step requires
a lookup at the storage layer, which is latency-bound and expensive for deep traversals. If
multitenant stores could be safely extended this function could avoid remote access stalls
and request processing costs.

● ●●● ●● ●● ●● ●

0

1

2

3

4

5

6

1 4 16 64 256 1024

Number of Tenants

T
hr

ou
gh

pu
t (

M
il

li
on

 r
eq

s/
se

c)

Isolation

●
Baseline,
No Isolation
Hardware,
No KPTI
Hardware,
KPTI

Figure 4.2: Simulated throughput versus the number of tenants. With hardware isolation,
even modestly increasing the number of tenants to 16 (just twice the number of cores)
leads to a significant drop in throughput. “No isolation” represents an upper bound where
isolation costs are zero.

113

Splinter Store

NIC

Tenants

Tenant-Based
NIC-level Dispatch

User-Level
Task Scheduling

DPDK Receive
Queues

Tenant
Extensions

In-memory
Tenant Data

graph-ext.so

1 2

3

4
5

Figure 4.3: Overview of Splinter. Tenant data is stored in memory, and tenants can invoke
extensions they have installed in the store (1©). Extensions are type safe, but compile to
native code. The NIC uses kernel bypass for low latency (2©) and assists in dispatch by
routing tenant requests to cores (3©). Each core runs a single worker kernel thread that
uses a user-level task scheduler to interleave the execution of tenant requests (4©).

114

fn aggregate (db : Rc<DB>) {
l e t mut sum = 0u64 ;
l e t mut s t a t u s = SUCCESS ;
l e t key = &db . args () [. . s i z e o f : : <u64 > ()] ;

i f l e t Some (k e y l s t) = db . get (TBL , key) {
/ / I t e r a t e KLEN sub − s l i c e s from k e y l s t
for k in k e y l s t . read () . chunks (KLEN) {

i f l e t Some (v) = db . get (TBL , k) {
sum += v . read () [0] as u64 ;

} e lse {
s t a t u s = INVALIDKEY ;
break ;

}
}

} e lse {
s t a t u s = INVALIDARG;

}
db . resp (pack(& s t a t u s)) ;
db . resp (pack(&sum)) ;

}

Figure 4.4: Example aggregate extension code. The extension takes a key as input (directly
from a request receive buffer), looks it up in the store, and gets a reference to a value that
contains a list of keys. It looks up each of those keys, it sums their values, and directly
appends the result to a response buffer.

115

Key 29
Key 16
Key 32

Key 7

Network
Headers

Transmit
BufferSUCCESS 201,216

Network
Headers

Receive
Buffer

Key 7

192,100 Key 29

8,188 Key 16

928 Key 32

Untrusted Extension

Trusted Store State

status sum

Copy

Copy

let key = &db.args()[..size_of::<u64>()];

if let Some(key_lst) = db.get(TBL, key) {
for k in key_lst.read().chunks(KLEN) {

if let Some(v) = db.get(TBL, k) {
sum += v.read()[0] as u64;

...

Reference

Table Heap &
Hash Map

Figure 4.5: References during aggregation. All data accessed by the extension in Listing 4.4
is by reference whether that data is part of the arguments in the receive buffer or part of
a record in the store. References work in reverse for the response; the extension passes
references to data to the store, and the store copies that data into the response buffer.

In-progress
Tasks

Requests
(Receive Queues)

Steal

Figure 4.6: Dispatch tasks on each core steal requests from the receive queue of the core to
their right whenever they have no requests in their own receive queue. As a result, work
from overloaded cores get redistributed without generating high contention. Here, core
1’s in-progress tasks were induced by requests stolen from core 2’s queue.

116

● ● ● ● ● ●
●

●

0

20

40

60

80

M
ed

ia
n

L
at

en
cy

 (
µs

)

● ● ● ● ●
●

●

●

●●●

0

100

200

300

0 1 2 3 4 5 6

Throughput (Millions of Operations/s)

99
th

 %
−

ti
le

 L
at

en
cy

 (
µs

)

● Extension Native

Figure 4.7: Comparison of YCSB-B performance using native and extension-based get()

and put() operations at a tenant density of 1,024. When using extensions, the server
saturates at 4.3 million operations per second. In comparison, native operations are about
23% more efficient, saturating at 5.3 million operations per second.

117

●
●

●

●

0

1

2

3

4

5

1 2 4 8

Number of Server Cores

T
hr

ou
gh

pu
t

(M
il

li
on

s
of

 O
pe

ra
ti

on
s/

s)

● Extension Native

Figure 4.8: Storage server scalability at a tenant density of 1,024. Points represent
throughput when YCSB-B latency crosses 10 µs. Isolation overhead is consistently lower
than 20%.

●●● ● ● ● ● ●

0
1
2
3
4
5

8 64 256 512 1024

Number of Tenants

T
hr

ou
gh

pu
t

(M
il

li
on

s
of

 O
pe

ra
ti

on
s/

s)

● Extension Native

Figure 4.9: Scaling tenants. Points represent server throughput when YCSB-B latency
crosses 10 µs. With isolation, increasing the number of tenants only impacts performance
modestly; moving from 8 to 1,024 tenants reduces throughput by 700 Kops/s.

118

0
5

10
15
20
25
30

M
ed

ia
n

L
at

en
cy

 (
µs

)

0
80

160
240
320
400

0.1 0.5 0.9 0.99

Tenant Skew

99
th

 %
−

ti
le

 L
at

en
cy

 (
µs

)

Splinter No Work Stealing No Locality

Figure 4.10: Latency with tenant skew. The server runs near saturation at 4 Mops/s in
each case. Without work stealing, tail latency under high skew increases from 138 µs to
330 µs. Without tenant locality, median and tail latencies are affected.

119

●

●● ● ● ● ●

0
0.2
0.4
0.6
0.8
1.0
1.2

T
hr

ou
gh

pu
t

(M
il

li
on

s
of

 O
pe

ra
ti

on
s/

s)

●

● ●
●

●

●

 0

10

20

30

40

2 8 16 32 64 128

Objects Read Per Yield

M
ed

ia
n

L
at

en
cy

 (
µs

)

Figure 4.11: Performance with a small fraction (15%) of cooperative long running
procedures that perform 128 gets. Yielding frequently can help improve median latency
from 38 µs to 22 µs. However, yielding too frequently hurts median latency. The storage
server was offered a constant load of 1.1 Mops/s.

120

● ● ● ● ● ●

0

 1

2

3

4

T
hr

ou
gh

pu
t

(M
il

li
on

s
of

 O
bj

ec
ts

/s
)

● ●
●

●

● ●

0

50

100

150

200

250

0 1e−07 5e−07 1e−06 5e−06 1e−05

Fraction of Misbehaving Extensions

99
th

 %
−

ti
le

 L
at

en
cy

 (
µs

)

Figure 4.12: Impact of uncooperative requests on performance. System throughput stays
constant at 3 Mops/s throughout. For fractions of uncooperative requests greater than 1
every million, tail latency is significantly affected (> 100 µs).

121

● ● ● ● ● ●
●

●

0
10
20
30
40
50
60
70

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Throughput (Millions of Aggregations/s)

M
ed

ia
n

L
at

en
cy

 (
µs

)

● Extension Client side

Figure 4.13: Aggregation throughput versus latency. Aggregations combine four records.
Under low load, the median latency of a client-side implementation is 1.6× that of an
extension-based implementation. Using an extension also improves saturating throughput
from 1.2 M to 1.6 M aggregations per second.

0.5

1

1.5

2

2.5

2 4 6 8 10

Records Summed per Aggregation

T
hr

ou
gh

pu
t

(M
il

li
on

s
of

 A
gg

re
ga

ti
on

s/
s)

Extension

Native

Figure 4.14: Saturating throughput of aggregation versus the number of aggregated
records. The extension-based implementation outperforms the client-side implementation
irrespective of the number of records aggregated. The gains are highest when aggregations
are over two records (2.4 M versus 1.5 M aggregations per second).

122

0.5

1

1.5

1000 2000 3000 4000 5000

Multiplication Operations per Aggregation

T
hr

ou
gh

pu
t

(M
il

li
on

s
of

 A
gg

re
ga

ti
on

s/
s)

Extension

Native

Figure 4.15: Saturating throughput of the aggregation extension versus the amount of
compute per aggregation. After aggregating two records, each operation raised the result
to the power n, implemented as n 64-bit multiplications (hence the x-axis). Increasing the
order (n) increases server-side compute in the extension-based implementation, hurting
throughput. At an order of 5000, the client-side approach is 2× faster.

● ● ● ●
●

●

0

10

20

30

40

0 0.5 1 1.5 2 2.5 3 3.5

Throughput (Millions of Operations/s)

A
ve

ra
ge

 L
at

en
cy

 (
µs

)

● Extension Native Combined

Figure 4.16: TAO extension throughput versus latency. With 60% object get and 40%
assoc range operations, the TAO extension can reach 2.8 Mop/s before saturating with an
average latency of 30 µs. By using native get() operations for object get, the extension-
based approach can outperform a purely client-side implementation by 400 Kop/s.

CHAPTER 5

CONCLUSION

Low-latency stores adopt simple, stripped-down designs that optimize for normal-case

performance, and in the process, trade-off practicality and cost-effectiveness at cloud scale.

This dissertation shows that this trade-off is unnecessary. Carefully leveraging and

extending new and existing abstractions for scheduling, data sharing, lock-freedom, and

isolation will yield feature-rich systems that retain their primary performance benefits at

cloud scale.

Rocksteady is a migration protocol for in-memory key-value stores that avoids the

need for and overhead of in-advance state partitioning; it eliminates replication overhead

from the migration fast-path; it exploits parallelism; it exploits modern NIC hardware.

Rocksteady has a “pay-as-you-go” approach that helps avoid overloading the source

during migration using asynchronous batched on-demand pulls to shift load away from

the source as parallel background transfers proceed. In all, Rocksteady can move the entire

DRAM of a modern data center machine in a few minutes while retaining 99.9th percentile

tail latency of lesser than 250 µs.

Shadowfax allows distributed key-value stores to span DRAM, SSDs, and cloud blob

storage transparently. Its unique approach avoids cross-core coordination during regular

operation and data migration both in its indexing and network interactions. Instead of

partitioning data among cores to avoid synchronization on record accesses, Shadowfax

partitions network sessions across cores and shares its lock-free hash index and log-

structured record heap among them. This risks contention when some records are hot

and frequently mutated, but this is more than offset by avoiding software-level intercore

request forwarding or routing within server VMs. In contrast to totally-ordered or

stop-the-world approaches used by most systems, cores in Shadowfax avoid stalling to

synchronize with one another, even when triggering complex operations like scale-out,

124

which require defining clear before/after points in time among concurrent operations.

Instead, each core participating in these operations – both at clients and servers –

independently decides a point in an asynchronous global cut that defines a boundary

between operation sequences in these complex operations. Compared to the state-of-the-

art, it has 8× better throughput and scales out 6× faster.

Splinter shows that soon legacy hardware isolation techniques will limit resource

provisioning granularity in the cloud, but it also provides a way forward. Systems

must evolve to support granular, low-overhead shipping of compute to storage, and

lightweight isolation between small compute tasks. Splinter works toward that evolution

by discarding hardware isolation in favor of static safety checks. As a result, it supports

thousands of tenants that can all access data in tens of microseconds while customizing

storage operations to their needs and while performing millions of remote operations on

modern multicore machines.

REFERENCES

[1] Adya, A., Myers, D., Howell, J., Elson, J., Meek, C., Khemani, V., Fulger, S.,

Gu, P., Bhuvanagiri, L., Hunter, J., Peon, R., Kai, L., Shraer, A., Merchant, A.,

and Lev-Ari, K. Slicer: Auto-sharding for Datacenter Applications. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and Implementation (Berkeley,
CA, USA, 2016), OSDI’16, USENIX Association, pp. 739–753.

[2] Aguilera, M. K., Merchant, A., Shah, M., Veitch, A., and Karamanolis, C.

Sinfonia: A New Paradigm for Building Scalable Distributed Systems. In Proceedings
of Twenty-first ACM SIGOPS Symposium on Operating Systems Principles (New York,
NY, USA, 2007), SOSP ’07, ACM, pp. 159–174.

[3] Balakrishnan, M., Malkhi, D., Prabhakaran, V., Wobbler, T., Wei, M., and

Davis, J. D. CORFU: A Shared Log Design for Flash Clusters. In Proceedings of the
9th USENIX Symposium on Networked Systems Design and Implementation (San Jose,
CA, 2012), NSDI ’12, USENIX Association, pp. 1–14.

[4] Balakrishnan, M., Malkhi, D., Wobber, T., Wu, M., Prabhakaran, V., Wei, M.,

Davis, J. D., Rao, S., Zou, T., and Zuck, A. Tango: Distributed Data Structures
Over a Shared Log. In Proceedings of the 24th ACM Symposium on Operating Systems
Principles (Farmington, PA, 2013), SOSP ’13, ACM, pp. 325–340.

[5] Balasubramanian, A., Baranowski, M. S., Burtsev, A., Panda, A., Rakamarić,

Z., and Ryzhyk, L. System Programming in Rust: Beyond Safety. In Proceedings of
the 16th Workshop on Hot Topics in Operating Systems (New York, NY, 2017), HotOS
’17, ACM, pp. 156–161.

[6] Barker, S., Chi, Y., Moon, H. J., Hacigümüş, H., and Shenoy, P. ”Cut Me
Some Slack”: Latency-aware Live Migration for Databases. In Proceedings of the 15th
International Conference on Extending Database Technology (New York, NY, USA, 2012),
EDBT ’12, ACM, pp. 432–443.

[7] Barroso, L., Marty, M., Patterson, D., and Ranganathan, P. Attack of the Killer
Microseconds. Communications of the ACM 60, 4 (Mar. 2017), 48–54.

[8] Belay, A., Prekas, G., Klimovic, A., Grossman, S., Kozyrakis, C., and Bugnion,

E. IX: A Protected Dataplane Operating System for High Throughput and Low
Latency. In Proceedings of the 11th USENIX Symposium on Operating Systems Design
and Implementation (Broomfield, CO, 2014), OSDI ’14, USENIX Association, pp. 49–
65.

[9] Bershad, B. N., Savage, S., Pardyak, P., Sirer, E. G., Fiuczynski, M. E., Becker,

D., Chambers, C., and Eggers, S. Extensibility Safety and Performance in the
SPIN Operating System. In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles (New York, NY, USA, 1995), SOSP ’95, Association for Computing
Machinery, p. 267–283.

126

[10] Bittau, A., Marchenko, P., Handley, M., and Karp, B. Wedge: Splitting
Applications into Reduced-Privilege Compartments. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation (Berkeley, CA,
2008), NSDI ’08, USENIX Association, pp. 309–322.

[11] Bronson, N., Amsden, Z., Cabrera, G., Chakka, P., Dimov, P., Ding, H., Ferris,

J., Giardullo, A., Kulkarni, S., Li, H., Marchukov, M., Petrov, D., Puzar, L.,

Song, Y. J., and Venkataramani, V. TAO: Facebook’s Distributed Data Store for
the Social Graph. In Proceedings of the 2013 USENIX Annual Technical Conference (San
Jose, CA, 2013), USENIX ATC ’13, USENIX Association, pp. 49–60.

[12] Brown, A., Oppenheimer, D., Keeton, K., Thomas, R., Kubiatowicz, J., and

Patterson, D. A. ISTORE: Introspective Storage for Data-Intensive Network
Services. In Proceedings of the The 7th Workshop on Hot Topics in Operating Systems
(Washington, DC, 1999), HotOS ’99, IEEE Computer Society, pp. 32–37.

[13] Cai, Z., Vagena, Z., Perez, L., Arumugam, S., Haas, P. J., and Jermaine, C.

Simulation of Database-valued Markov Chains Using SimSQL. In Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data (New York, NY,
2013), SIGMOD ’13, ACM, pp. 637–648.

[14] Carruth, C. [SLH] Introduce a new pass to do Speculative Load Hardening to
mitigate. http://reviews.llvm.org/rL336990. Accessed: 09/27/2018.

[15] Chandramouli, B., Goldstein, J., Barnett, M., DeLine, R., Fisher, D., Platt,

J. C., Terwilliger, J. F., and Wernsing, J. Trill: A High-performance Incremental
Query Processor for Diverse Analytics. Proc. VLDB Endow. 8, 4 (Dec. 2014), 401–412.

[16] Chandramouli, B., Prasaad, G., Kossmann, D., Levandoski, J., Hunter, J., and

Barnett, M. Faster: A Concurrent Key-Value Store with In-Place Updates. In
Proceedings of the 2018 International Conference on Management of Data (New York, NY,
USA, 2018), SIGMOD ’18, ACM, pp. 275–290.

[17] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M.,

Chandra, T., Fikes, A., and Gruber, R. E. Bigtable: A Distributed Storage System
for Structured Data. ACM Transactions on Computer Systems (TOCS) 26, 2 (June 2008),
4:1–4:26.

[18] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R.

Benchmarking Cloud Serving Systems with YCSB. In Proceedings of the 1st ACM
Symposium on Cloud Computing (New York, NY, USA, 2010), SoCC ’10, ACM, pp. 143–
154.

[19] Copeland, M., Soh, J., Puca, A., Manning, M., and Gollob, D. Microsoft Azure:
Planning, Deploying, and Managing Your Data Center in the Cloud, 1st ed. Apress, USA,
2015.

[20] Corbet, J. KAISER: hiding the kernel from user space. http://lwn.net/

Articles/738975/. Accessed: 09/27/2018.

[21] Corbet, J. Meltdown/Spectre mitigation for 4.15 and beyond. http://lwn.net/

Articles/744287/. Accessed: 09/27/2018.

127

[22] Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J.,

Ghemawat, S., Gubarev, A., Heiser, C., Hochschild, P., Hsieh, W., Kanthak,

S., Kogan, E., Li, H., Lloyd, A., Melnik, S., Mwaura, D., Nagle, D., Quinlan,

S., Rao, R., Rolig, L., Saito, Y., Szymaniak, M., Taylor, C., Wang, R., and

Woodford, D. Spanner: Google’s Globally-distributed Database. In 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 12) (Hollywood,
CA, Oct. 2012), USENIX Association, pp. 251–264.

[23] Das, S., Nishimura, S., Agrawal, D., and El Abbadi, A. Albatross: Lightweight
Elasticity in Shared Storage Databases for the Cloud Using Live Data Migration.
Proceedings of the Very Large Data Base Endowment 4, 8 (May 2011), 494–505.

[24] Dean, J., and Ghemawat, S. MapReduce: Simplified Data Processing on Large
Clusters. In Proceedings of the 6th Conference on Symposium on Opearting Systems
Design and Implementation (Berkeley, CA, 2004), OSDI ’04, USENIX Association,
pp. 10–10.

[25] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A.,

Pilchin, A., Sivasubramanian, S., Vosshall, P., and Vogels, W. Dynamo:
Amazon’s Highly Available Key-value Store. In Proceedings of 21st ACM SIGOPS
Symposium on Operating Systems Principles (New York, NY, 2007), SOSP ’07, ACM,
pp. 205–220.

[26] Ding, C., Chu, D., Zhao, E., Li, X., Alvisi, L., and Renesse, R. V. Scalog:
Seamless Reconfiguration and Total Order in a Scalable Shared Log. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 20) (Santa Clara,
CA, Feb. 2020), USENIX Association, pp. 325–338.

[27] Dragojević, A., Narayanan, D., and Castro, M. RDMA Reads: To Use or Not to
Use? IEEE Data Engineering Bulletin 40, 1 (2017), 3–14.

[28] Dragojević, A., Narayanan, D., Hodson, O., and Castro, M. FaRM: Fast Remote
Memory. In Proceedings of the 11th USENIX Conference on Networked Systems Design
and Implementation (Berkeley, CA, 2014), NSDI ’14, USENIX Association, pp. 401–414.

[29] Dragojević, A., Narayanan, D., Nightingale, E. B., Renzelmann, M., Shamis,

A., Badam, A., and Castro, M. No Compromises: Distributed Transactions with
Consistency, Availability, and Performance. In Proceedings of the 25th Symposium on
Operating Systems Principles (New York, NY, USA, 2015), SOSP ’15, Association for
Computing Machinery, p. 54–70.

[30] Elmore, A. J., Arora, V., Taft, R., Pavlo, A., Agrawal, D., and El Abbadi, A.

Squall: Fine-Grained Live Reconfiguration for Partitioned Main Memory Databases.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data (New York, NY, USA, 2015), SIGMOD ’15, ACM, pp. 299–313.

[31] Elmore, A. J., Das, S., Agrawal, D., and El Abbadi, A. Zephyr: Live Migration
in Shared Nothing Databases for Elastic Cloud Platforms. In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data (New York, NY, USA,
2011), SIGMOD ’11, ACM, pp. 301–312.

128

[32] Ford, B., and Cox, R. Vx32: Lightweight User-level Sandboxing on the x86. In
Proceedings of the 2008 USENIX Annual Technical Conference (Berkeley, CA, 2008),
USENIX ATC ’08, USENIX Association, pp. 293–306.

[33] Fraser, K. Practical Lock-freedom. PhD thesis, University of Cambridge, UK, 2004.

[34] Freedman, C., Ismert, E., and Larson, P. Compilation in the Microsoft SQL Server
Hekaton Engine. IEEE Data Engineering Bulletin 37, 1 (2014), 22–30.

[35] Geambasu, R., Levy, A. A., Kohno, T., Krishnamurthy, A., and Levy, H. M.

Comet: An Active Distributed Key-Value Store. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation (Vancouver, BC, 2010),
OSDI ’10, USENIX Association, pp. 323–336.

[36] Google LLC. NaCl and PNaCl. http://developer.chrome.com/native-client/
nacl-and-pnacl. Accessed: 09/27/2018.

[37] Gribble, S. D., Brewer, E. A., Hellerstein, J. M., and Culler, D. Scalable,
Distributed Data Structures for Internet Service Construction. In Proceedings of the
4th USENIX Symposium on Operating System Design and Implementation (Berkeley, CA,
2000), OSDI ’00, USENIX Association.

[38] Hazelcast. Hazelcast the Leading In-Memory Data Grid - Hazelcast.com. http:

//hazelcast.com/. Accessed: 09/27/2018.

[39] Hennessy, J. L., and Patterson, D. A. Computer Architecture: A Quantitative
Approach. Elsevier, 2011.

[40] Hunt, G., and Larus, J. Singularity: Rethinking the Software Stack. ACM SIGOPS
Operating Systems Review 41/2 (April 2007), 37–49.

[41] Hunt, P., Konar, M., Junqueira, F. P., and Reed, B. ZooKeeper: Wait-
free Coordination for Internet-scale Systems. In 2010 USENIX Annual Technical
Conference, Boston, MA, USA, June 23-25, 2010 (2010), USENIX Association.

[42] IEEE. 802.3-2015 - IEEE Standard for Ethernet. https://standards.ieee.org/

findstds/standard/802.3-2015.html. Accessed: 02/01/2021.

[43] Intel Corporation. Flow Director. http://www.intel.com/content/dam/www/

public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf.
Accessed: 09/27/2018.

[44] Intel®. Data Plane Development Kit. http://dpdk.org/. Accessed: 4/10/2017.

[45] Intel®. Intel®Data Direct I/O technology. http://www.intel.com/content/www/

us/en/io/data-direct-i-o-technology.html. Accessed: 10/19/2016.

[46] Jacobsen, C., Khole, M., Spall, S., Bauer, S., and Burtsev, A. Lightweight
Capability Domains: Towards Decomposing the Linux Kernel. SIGOPS Operating
Systems Review 49, 2 (Jan. 2016), 44–50.

[47] Jung, R. LLVM loop optimization can make safe programs crash #28728. http:

//github.com/rust-lang/rust/issues/28728. Accessed: 09/27/2018.

129

[48] Jung, R., Jourdan, J., Krebbers, R., and Dreyer, D. RustBelt: Securing
the Foundations of the Rust Programming Language. Proceedings of the ACM on
Programming Languages 2 (2018), 66:1–66:34.

[49] Kalia, A., Kaminsky, M., and Andersen, D. G. Using RDMA Efficiently for
Key-value Services. In Proceedings of the 2014 ACM Conference on SIGCOMM (New
York, NY, USA, 2014), SIGCOMM ’14, ACM, pp. 295–306.

[50] Kalia, A., Kaminsky, M., and Andersen, D. G. Design Guidelines for High
Performance RDMA Systems. In 2016 USENIX Annual Technical Conference (USENIX
ATC 16) (Denver, CO, June 2016), USENIX Association, pp. 437–450.

[51] Kalia, A., Kaminsky, M., and Andersen, D. G. FaSST: Fast, Scalable and Simple
Distributed Transactions with Two-Sided (RDMA) Datagram RPCs. In Proceedings
of the 12th USENIX Symposium on Operating Systems Design and Implementation
(Savannah, GA, 2016), OSDI ’16, USENIX Association, pp. 185–201.

[52] Kalia, A., Kaminsky, M., and Andersen, D. G. Datacenter RPCs can be General
and Fast. CoRR abs/1806.00680 (2018).

[53] Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A., Zdonik, S., Jones,

E. P. C., Madden, S., Stonebraker, M., Zhang, Y., Hugg, J., and Abadi, D. J.

H-store: A High-performance, Distributed Main Memory Transaction Processing
System. Proceedings of the Very Large Data Base Endowment 1, 2 (Aug. 2008), 1496–1499.

[54] Kaufmann, A., Peter, S., Sharma, N. K., Anderson, T., and Krishnamurthy,

A. High Performance Packet Processing with Flexnic. In Proceedings of the Twenty-
First International Conference on Architectural Support for Programming Languages
and Operating Systems (New York, NY, USA, 2016), ASPLOS ’16, Association for
Computing Machinery, p. 67–81.

[55] Kejriwal, A., Gopalan, A., Gupta, A., Jia, Z., Yang, S., and Ousterhout, J.

SLIK: Scalable Low-Latency Indexes for a Key-Value Store. In 2016 USENIX Annual
Technical Conference (USENIX ATC 16) (Denver, CO, June 2016), USENIX Association,
pp. 57–70.

[56] Kesavan, A., Ricci, R., and Stutsman, R. To Copy or Not to Copy: Making
In-memory Databases Fast on Modern NICs. In Data Management on New Hardware
(Cham, 2017), Springer International Publishing, pp. 79–94.

[57] Kiriansky, V., and Waldspurger, C. Speculative Buffer Overflows: Attacks and
Defenses. CoRR abs/1807.03757 (2018).

[58] Kocher, P., Horn, J., Fogh, A., , Genkin, D., Gruss, D., Haas, W., Hamburg,

M., Lipp, M., Mangard, S., Prescher, T., Schwarz, M., and Yarom, Y. Spectre
Attacks: Exploiting Speculative Execution. In Proceedings of the 40th IEEE Symposium
on Security and Privacy (2019), S&P ’19.

[59] Kulkarni, C., Chandramouli, B., and Stutsman, R. Achieving High Throughput
and Elasticity in a Larger-than-memory Store. arXiv 2006.03206 (2020).

130

[60] Kulkarni, C., Kesavan, A., Zhang, T., Ricci, R., and Stutsman, R. Rocksteady:
Fast Migration for Low-latency In-memory Storage. In Proceedings of the 26th
Symposium on Operating Systems Principles (New York, NY, 2017), SOSP ’17, ACM,
pp. 390–405.

[61] Kulkarni, C., Moore, S., Naqvi, M., Zhang, T., Ricci, R., and Stutsman,

R. Splinter: Bare-metal Extensions for Multi-tenant Low-latency Storage. In
13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18)
(Carlsbad, CA, Oct. 2018), USENIX Association, pp. 627–643.

[62] Kung, H. T., and Lehman, P. L. Concurrent Manipulation of Binary Search Trees.
ACM Transactions on Database Systems 5, 3 (Sept. 1980), 354–382.

[63] Lattner, C., and Adve, V. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization (2004), CGO
’04, IEEE, pp. 75–86.

[64] Lee, C., Park, S. J., Kejriwal, A., Matsushita, S., and Ousterhout, J.

Implementing linearizability at large scale and low latency. In Proceedings of the 25th
Symposium on Operating Systems Principles (New York, NY, USA, 2015), SOSP ’15,
ACM, pp. 71–86.

[65] Leis, V., Boncz, P., Kemper, A., and Neumann, T. Morsel-driven Parallelism: A
NUMA-aware Query Evaluation Framework for the Many-core Age. In Proceedings
of the 2014 ACM SIGMOD International Conference on Management of Data (New York,
NY, USA, 2014), SIGMOD ’14, ACM, pp. 743–754.

[66] Levandoski, J., Lomet, D., Sengupta, S., Stutsman, R., and Wang, R. High
Performance Transactions in Deuteronomy. In Proceedings of the Seventh Biennial
Conference on Innovative Data Systems Research (Asilomar, USA, Jan. 2015), CIDR ’15.

[67] Levandoski, J. J., Lomet, D., Sengupta, S., Stutsman, R., and Wang, R. Multi-
version Range Concurrency Control in Deuteronomy. In Proceedings of the VLDB
Endowment (Sept. 2015), vol. 8, VLDB Endowment, p. 2146–2157.

[68] Levandoski, J. J., Lomet, D. B., and Sengupta, S. The Bw-Tree: A B-tree for new
hardware platforms. In 29th IEEE International Conference on Data Engineering, ICDE
2013, Brisbane, Australia, April 8-12, 2013 (2013), pp. 302–313.

[69] Levandoski, J. J., Lomet, D. B., Sengupta, S., Birka, A., and Diaconu, C.

Indexing on Modern Hardware: Hekaton and Beyond. In Proceedings of the 2014
International Conference on Management of Data (2014), SIGMOD ’14, pp. 717–720.

[70] Levy, A., Campbell, B., Ghena, B., Giffin, D. B., Pannuto, P., Dutta, P., and

Levis, P. Multiprogramming a 64kB Computer Safely and Efficiently. In Proceedings
of the 26th Symposium on Operating Systems Principles (New York, NY, 2017), SOSP ’17,
ACM, pp. 234–251.

[71] Li, B., Ruan, Z., Xiao, W., Lu, Y., Xiong, Y., Putnam, A., Chen, E., and Zhang,

L. Kv-direct: High-performance In-memory Key-value Store with Programmable
NIC. In Proceedings of the 26th Symposium on Operating Systems Principles (New York,
NY, USA, 2017), SOSP ’17, ACM, pp. 137–152.

131

[72] Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed, A., Josifovski,

V., Long, J., Shekita, E. J., and Su, B.-Y. Scaling distributed machine learning
with the parameter server. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14) (Broomfield, CO, Oct. 2014), USENIX Association,
pp. 583–598.

[73] Li, S., Lim, H., Lee, V. W., Ahn, J. H., Kalia, A., Kaminsky, M., Andersen, D. G.,

Seongil, O., Lee, S., and Dubey, P. Architecting to Achieve a Billion Requests
per Second Throughput on a Single Key-value Store Server Platform. In Proceedings
of the 42nd Annual International Symposium on Computer Architecture (New York, NY,
USA, 2015), ISCA ’15, ACM, pp. 476–488.

[74] Lim, H., Han, D., Andersen, D. G., and Kaminsky, M. MICA: A Holistic Approach
to Fast In-memory Key-value Storage. In Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation (Berkeley, CA, 2014), NSDI ’14,
USENIX Association, pp. 429–444.

[75] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn,

J., Mangard, S., Kocher, P., Genkin, D., Yarom, Y., and Hamburg, M.

Meltdown: Reading Kernel Memory From User Space. In Proceedings of the 27th
USENIX Security Symposium (USENIX Security 18) (Baltimore, MD, 2018), USENIX
Association, pp. 973–990.

[76] Maas, R., Hyrkas, J., Telford, O. G., Balazinska, M., Connolly, A., and

Howe, B. Gaussian Mixture Models Use-Case: In-memory Analysis with Myria.
In Proceedings of the 3rd VLDB Workshop on In-Memory Data Mangement and Analytics
(New York, NY, USA, 2015), IMDM ’15, Association for Computing Machinery.

[77] MacCormick, J., Murphy, N., Najork, M., Theth, C. A., and Zhou, L. Boxwood:
Abstractions As the Foundation for Storage Infrastructure. In Proceedings of the 6th
USENIX Symposium on Opearting Systems Design and Implementation (Berkeley, CA,
2004), vol. 6 of OSDI ’04, USENIX Association, pp. 8–8.

[78] McCamant, S., and Morrisett, G. Evaluating SFI for a CISC Architecture.
In Proceedings of the 15th Conference on USENIX Security Symposium - Volume 15
(Berkeley, CA, 2006), USENIX-SS ’06, USENIX Association.

[79] McKenney, P. E., and Slingwine, J. D. Read-copy Update: Using Execution
History to Solve Concurrency Problems. In Parallel and Distributed Computing and
Systems (1998), vol. 509518, pp. 509–518.

[80] Mellanox Technologies. IPoIB. https://www.advancedclustering.com/act_kb/
ipoib-using-tcpip-on-an-infiniband-network/. Accessed: 4/28/2020.

[81] Mellanox Technologies. Mellanox Announces 200Gb/s HDR InfiniBand Solutions
Enabling Record Levels of Performance and Scalability. http://www.mellanox.

com/page/press_release_item?id=1810. Accessed: 02/01/2020.

[82] Michael, M. M. Safe Memory Reclamation for Dynamic Lock-free Objects Using
Atomic Reads and Writes. In Proceedings of the Twenty-first Annual Symposium on
Principles of Distributed Computing (New York, NY, USA, 2002), PODC ’02, ACM,
pp. 21–30.

132

[83] Microsoft Azure. Accelerated Networking. https://docs.microsoft.com/

en-us/azure/virtual-network/create-vm-accelerated-networking-cli.
Accessed: 4/22/2020.

[84] Microsoft Azure. Azure Blob storage. https://docs.microsoft.com/en-us/

azure/storage/blobs/storage-blob-pageblob-overview. Accessed: 4/22/2020.

[85] Microsoft Azure. Azure HPC VMs. https://azure.microsoft.com/en-us/

blog/introducing-the-new-hb-and-hc-azure-vm-sizes-for-hpc/. Accessed:
4/27/2020.

[86] Microsoft Azure. Azure Memory Optimized VMs. https://docs.microsoft.

com/en-us/azure/virtual-machines/ev3-esv3-series. Accessed: 4/22/2020.

[87] Microsoft, Inc. Transact-SQL Reference (Database Engine). http://docs.

microsoft.com/en-us/sql/t-sql/language-reference. Accessed: 09/27/2018.

[88] Mitchell, C., Geng, Y., and Li, J. Using One-Sided RDMA Reads to Build a Fast,
CPU-Efficient Key-Value Store. In 2013 USENIX Annual Technical Conference, San
Jose, CA, USA, June 26-28, 2013 (2013), pp. 103–114.

[89] Nelson, J., Holt, B., Myers, B., Briggs, P., Ceze, L., Kahan, S., and Oskin,

M. Latency-Tolerant Software Distributed Shared Memory. In 2015 USENIX
Annual Technical Conference (Santa Clara, CA, July 2015), USENIX ATC ’15, USENIX
Association, pp. 291–305.

[90] Neo4j, Inc. Neo4j, the World’s Leading Graph Database. http://neo4j.com/.
Accessed: 09/27/2018.

[91] Neumann, T. Efficiently Compiling Efficient Query Plans for Modern Hardware.
Proceedings of the VLDB Endowment 4, 9 (2011), 539–550.

[92] Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H. C.,

McElroy, R., Paleczny, M., Peek, D., Saab, P., Stafford, D., Tung, T., and

Venkataramani, V. Scaling Memcache at Facebook. In 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13) (Lombard, IL, Apr. 2013),
USENIX Association, pp. 385–398.

[93] Ongaro, D., and Ousterhout, J. In Search of an Understandable Consensus
Algorithm. In 2014 USENIX Annual Technical Conference (USENIX ATC 14)
(Philadelphia, PA, 2014), USENIX Association, pp. 305–319.

[94] Ongaro, D., Rumble, S. M., Stutsman, R., Ousterhout, J., and Rosenblum,

M. Fast Crash Recovery in RAMCloud. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles (2011), ACM, pp. 29–41.

[95] Oracle, Inc. Oracle Database 12c PL/SQL. http://www.oracle.com/

technetwork/database/features/plsql/index.html. Accessed: 09/27/2018.

[96] Ousterhout, J., Gopalan, A., Gupta, A., Kejriwal, A., Lee, C., Montazeri, B.,

Ongaro, D., Park, S. J., Qin, H., Rosenblum, M., and et al. The RAMCloud
Storage System. ACM Transactions on Computer Systems 33, 3 (Aug. 2015).

133

[97] Ousterhout, K., Wendell, P., Zaharia, M., and Stoica, I. Sparrow: Distributed,
Low Latency Scheduling. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (New York, NY, USA, 2013), SOSP ’13, ACM, pp. 69–84.

[98] Panda, A., Han, S., Jang, K., Walls, M., Ratnasamy, S., and Shenker, S.

NetBricks: Taking the V out of NFV. In Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation (Savannah, GA, 2016), OSDI ’16,
USENIX Association, pp. 203–216.

[99] Paradigm4, Inc. Paradigm4: Cretators of SciDB a computational Database. http:

//www.paradigm4.com/. Accessed: 09/27/2018.

[100] Peter, S., Li, J., Zhang, I., Ports, D. R. K., Woos, D., Krishnamurthy, A.,

Anderson, T., and Roscoe, T. Arrakis: The Operating System is the Control Plane.
ACM Transactions on Computer Systems 33, 4 (Nov. 2015).

[101] Phothilimthana, P. M., Liu, M., Kaufmann, A., Peter, S., Bodik, R., and

Anderson, T. Floem: A Programming System for NIC-accelerated Network
Applications. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (USA, 2018), OSDI’18, USENIX Association, p. 663–679.

[102] Prasaad, G., Chandramouli, B., and Kossmann, D. Concurrent Prefix Recovery:
Performing CPR on a Database. In Proceedings of the 2019 International Conference
on Management of Data (New York, NY, USA, 2019), SIGMOD ’19, Association for
Computing Machinery, p. 687–704.

[103] Prekas, G., Kogias, M., and Bugnion, E. ZygOS: Achieving Low Tail Latency
for Microsecond-scale Networked Tasks. In Proceedings of the 26th Symposium on
Operating Systems Principles (Shanghai, China, 2017), SOSP ’17, ACM, pp. 325–341.

[104] Qin, H., Li, Q., Speiser, J., Kraft, P., and Ousterhout, J. Arachne: Core-Aware
Thread Management. In Proceedings of the 13th USENIX Symposium on Operating
Systems Design and Implementation (Carlsbad, CA, 2018), OSDI ’2018, USENIX
Association.

[105] Redis Labs. Redis. http://redis.io/. 7/24/2015.

[106] Ricci, R., and Eide, E. Introducing CloudLab: Scientific Infrastructure for
Advancing Cloud Architectures and Applications. USENIX ; login: 39, 6 (2014),
36–38.

[107] Rumble, S. M., Kejriwal, A., and Ousterhout, J. Log-structured Memory for
DRAM-based Storage. In Proceedings of the 12th USENIX Conference on File and Storage
Technologies (FAST 14) (Santa Clara, CA, 2014), USENIX, pp. 1–16.

[108] Rust. The Rust Programming Language. http://www.rust-lang.org/en-US/.
Accessed: 09/27/2018.

[109] Schiller, O., Cipriani, N., and Mitschang, B. ProRea: Live Database Migration for
Multi-tenant RDBMS with Snapshot Isolation. In Proceedings of the 16th International
Conference on Extending Database Technology (New York, NY, USA, 2013), EDBT ’13,
ACM, pp. 53–64.

134

[110] ScyllaDB. Seastar Applications. http://seastar.io/seastar-applications/.
Accessed: 4/22/2020.

[111] ScyllaDB. Seastar Framework. http://seastar.io. Accessed: 4/22/2020.

[112] Seltzer, M. I., Endo, Y., Small, C., and Smith, K. A. Dealing with Disaster:
Surviving Misbehaved Kernel Extensions. In Proceedings of the 2nd USENIX
Symposium on Operating Systems Design and Implementation (1996), OSDI ’96, USENIX
Association, pp. 213–227.

[113] Sevilla, M. A., Watkins, N., Jimenez, I., Alvaro, P., Finkelstein, S., LeFevre, J.,

and Maltzahn, C. Malacology: A Programmable Storage System. In Proceedings of
the 12th European Conference on Computer Systems (2017), Eurosys ’17, ACM, pp. 175–
190.

[114] Shvachko, K., Kuang, H., Radia, S., and Chansler, R. The Hadoop Distributed
File System. In 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST) (2010), IEEE, pp. 1–10.

[115] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H.

Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. In
Proceedings of the 2001 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (New York, NY, USA, 2001), SIGCOMM ’01,
Association for Computing Machinery, p. 149–160.

[116] Stonebraker, M., and Kemnitz, G. The POSTGRES Next Generation Database
Management System. Communications of the ACM 34, 10 (Oct. 1991), 78–92.

[117] Stonebraker, M., and Weisberg, A. The Voltdb Main Memory DBMS. IEEE Data
Engineering Bulletin 36, 2 (2013), 21–27.

[118] Stutsman, R., Lee, C., and Ousterhout, J. Experience with Rules-Based
Programming for Distributed, Concurrent, Fault-Tolerant Code. In Proceedings of
the 2015 USENIX Conference on Usenix Annual Technical Conference (Santa Clara, CA,
July 2015), USENIX ATC ’15, USENIX Association, p. 17–30.

[119] Sullivan, M., and Stonebraker, M. Using Write Protected Data Structures
to Improve Software Fault Tolerance in Highly Available Database Management
Systems. In Proceedings of the VLDB Endowment (1991), VLDB ’91, VLDB
Endowment, pp. 171–180.

[120] Swift, M. M., Bershad, B. N., and Levy, H. M. Improving the Reliability of
Commodity Operating Systems. In Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles (New York, NY, USA, 2003), SOSP ’03, Association
for Computing Machinery, p. 207–222.

[121] Taft, R., Mansour, E., Serafini, M., Duggan, J., Elmore, A. J., Aboulnaga,

A., Pavlo, A., and Stonebraker, M. E-store: Fine-grained Elastic Partitioning for
Distributed Transaction Processing Systems. Proceedings of the Very Large Data Base
Endowment 8, 3 (Nov. 2014), 245–256.

[122] The Apache Software Foundation. Apache Cassandra. http://cassandra.

apache.org/. Accessed: 02/01/2021.

135

[123] The Apache Software

Foundation. Spark Streaming. https://spark.apache.org/streaming/. Accessed:
02/01/2021.

[124] The PostgreSQL Global Development Group. PostgreSQL: Documentation: 10:
H.4. Extensions. http:

//www.postgresql.org/docs/10/static/external-extensions.html. Accessed:
09/27/2018.

[125] Tu, S., Zheng, W., Kohler, E., Liskov, B., and Madden, S. Speedy Transactions in
Multicore In-memory Databases. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles (2013), ACM, pp. 18–32.

[126] Wahbe, R., Lucco, S., Anderson, T. E., and Graham, S. L. Efficient Software-
based Fault Isolation. In Proceedings of the 14th Symposium on Operating Systems
Principles (New York, NY, 1993), SOSP ’93, ACM, pp. 203–216.

[127] Wallach, D. S., Balfanz, D., Dean, D., and Felten, E. W. Extensible Security
Architectures for Java. SIGOPS Operating Systems Review 31, 5 (Oct. 1997), 116–128.

[128] Wei, X., Shen, S., Chen, R., and Chen, H. Replication-driven Live Reconfiguration
for Fast Distributed Transaction Processing. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17) (Santa Clara, CA, 2017), USENIX Association, pp. 335–
347.

[129] Wei, X., Shi, J., Chen, Y., Chen, R., and Chen, H. Fast In-memory Transaction
Processing Using RDMA and HTM. In Proceedings of the 25th Symposium on Operating
Systems Principles (New York, NY, 2015), SOSP ’15, ACM, pp. 87–104.

[130] Wu, C., Faleiro, J., Lin, Y., and Hellerstein, J. Anna: A KVS for Any Scale. In
2018 IEEE 34th International Conference on Data Engineering (ICDE) (2018), pp. 401–
412.

[131] Yee, B., Sehr, D., Dardyk, G., Chen, J. B., Muth, R., Ormandy, T., Okasaka, S.,

Narula, N., and Fullagar, N. Native Client: A Sandbox for Portable, Untrusted
x86 Native Code. In Proceedings of the 30th IEEE Symposium on Security and Privacy
(2009), S&P ’09, IEEE, pp. 79–93.

[132] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin,

M. J., Shenker, S., and Stoica, I. Resilient Distributed Datasets: A Fault-
Tolerant Abstraction for In-Memory Cluster Computing. In 9th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 12) (San Jose, CA, 2012),
USENIX, pp. 15–28.

[133] Zheng, W., Tu, S., Kohler, E., and Liskov, B. Fast Databases with Fast Durability
and Recovery Through Multicore Parallelism. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation (Berkeley, CA, USA, 2014),
OSDI’14, USENIX Association, pp. 465–477.

